These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32033156)

  • 1. Influence of Pore Size and Fatigue Loading on NaCl Transport Properties in C-S-H Nanopores: A Molecular Dynamics Simulation.
    Cao Q; Xu Y; Fang J; Song Y; Wang Y; You W
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion exclusion and electrokinetic effects resulting from electro-osmotic flow of salt solutions in charged silica nanopores.
    Haria NR; Lorenz CD
    Phys Chem Chem Phys; 2012 May; 14(17):5935-44. PubMed ID: 22441317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores.
    Ho MC; Casciola M; Levine ZA; Vernier PT
    J Phys Chem B; 2013 Oct; 117(39):11633-40. PubMed ID: 24001115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion of cisplatin molecules in silica nanopores: Molecular dynamics study of a targeted drug delivery system.
    Nejad MA; Urbassek HM
    J Mol Graph Model; 2019 Jan; 86():228-234. PubMed ID: 30390543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling sorption and diffusion of organic sorbate in hexadecyltrimethylammonium-modified clay nanopores - a molecular dynamics simulation study.
    Zhao Q; Burns SE
    Environ Sci Technol; 2013 Mar; 47(6):2769-76. PubMed ID: 23413980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport properties and distribution of water molecules confined in hydrophobic nanopores and nanoslits.
    Liu Y; Wang Q; Lu L
    Langmuir; 2004 Aug; 20(16):6921-6. PubMed ID: 15274604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiphysics and Multiscale Modeling of Coupled Transport of Chloride Ions in Concrete.
    Jain A; Gencturk B
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33668413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion Move Brownian Dynamics (IMBD)--simulations of ion transport.
    Kurczynska M; Kotulska M
    Acta Bioeng Biomech; 2014; 16(4):107-16. PubMed ID: 25597535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water Bridges in Clay Nanopores: Mechanisms of Formation and Impact on Hydrocarbon Transport.
    Xiong H; Devegowda D; Huang L
    Langmuir; 2020 Jan; 36(3):723-733. PubMed ID: 31910022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics and diffusion of liquid water and hydrated ions through nanopores in graphene: ab initio molecular dynamics simulation.
    Guerrero-Avilés R; Orellana W
    Phys Chem Chem Phys; 2017 Aug; 19(31):20551-20558. PubMed ID: 28730215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Cross-Scale Framework for Modelling Chloride Ions Diffusion in C-S-H: Combined Effects of Slip, Electric Double Layer and Ion Correlation.
    Qi Y; Peng W; Zhang W; Jing Y; Hu L
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Simulation of the Adsorption and Diffusion in Cylindrical Nanopores: Effect of Shape and Fluid⁻Solid Interactions.
    Cárdenas H; Müller EA
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30744108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of ion migration in nanopores and the effect of DNA-ion interaction.
    Cui S
    J Phys Chem B; 2011 Sep; 115(36):10699-706. PubMed ID: 21800829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein diffusion through charged nanopores with different radii at low ionic strength.
    Stroeve P; Rahman M; Naidu LD; Chu G; Mahmoudi M; Ramirez P; Mafe S
    Phys Chem Chem Phys; 2014 Oct; 16(39):21570-6. PubMed ID: 25189648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media.
    Bourg IC; Sposito G
    Environ Sci Technol; 2010 Mar; 44(6):2085-91. PubMed ID: 20146523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical Prediction of Gas Permeation through Graphene Nanopores of Varying Sizes: Understanding Transitions across Multiple Transport Regimes.
    Yuan Z; Misra RP; Rajan AG; Strano MS; Blankschtein D
    ACS Nano; 2019 Oct; 13(10):11809-11824. PubMed ID: 31532624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoscale simulations of biomolecular transport through nanofilters with tapered and cylindrical geometries.
    Ileri N; Létant SE; Palazoglu A; Stroeve P; Tringe JW; Faller R
    Phys Chem Chem Phys; 2012 Nov; 14(43):15066-77. PubMed ID: 23034638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drastically Reduced Ion Mobility in a Nanopore Due to Enhanced Pairing and Collisions between Dehydrated Ions.
    Ma J; Li K; Li Z; Qiu Y; Si W; Ge Y; Sha J; Liu L; Xie X; Yi H; Ni Z; Li D; Chen Y
    J Am Chem Soc; 2019 Mar; 141(10):4264-4272. PubMed ID: 30773010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion of water and sodium counter-ions in nanopores of a β-lactoglobulin crystal: a molecular dynamics study.
    Malek K; Odijk T; Coppens MO
    Nanotechnology; 2005 Jul; 16(7):S522-30. PubMed ID: 21727473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and Diffusion of Cisplatin Molecules in Nanoporous Materials: A Molecular Dynamics Study.
    Nejad MA; Urbassek HM
    Biomolecules; 2019 May; 9(5):. PubMed ID: 31137858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.