These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32033238)

  • 1. How Laboratory Experiments Can Be Exploited forMonitoring Stress in the Wild: A Bridge BetweenLaboratory and Daily Life.
    Can YS; Gokay D; Kılıç DR; Ekiz D; Chalabianloo N; Ersoy C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress detection in daily life scenarios using smart phones and wearable sensors: A survey.
    Can YS; Arnrich B; Ersoy C
    J Biomed Inform; 2019 Apr; 92():103139. PubMed ID: 30825538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study.
    Can YS; Chalabianloo N; Ekiz D; Ersoy C
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting Prolonged Stress in Real Life Using Wearable Biosensors and Ecological Momentary Assessments: Naturalistic Experimental Study.
    Tutunji R; Kogias N; Kapteijns B; Krentz M; Krause F; Vassena E; Hermans EJ
    J Med Internet Res; 2023 Oct; 25():e39995. PubMed ID: 37856180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Wearable Devices and Speech Data for Personalized Machine Learning in Early Detection of Mental Disorders: Protocol for a Participatory Research Study.
    Diaz-Ramos RE; Noriega I; Trejo LA; Stroulia E; Cao B
    JMIR Res Protoc; 2023 Nov; 12():e48210. PubMed ID: 37955959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Machine Learning to Derive Just-In-Time and Personalized Predictors of Stress: Observational Study Bridging the Gap Between Nomothetic and Ideographic Approaches.
    Rozet A; Kronish IM; Schwartz JE; Davidson KW
    J Med Internet Res; 2019 Apr; 21(4):e12910. PubMed ID: 31025942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Continuously Updated, Computationally Efficient Stress Recognition Framework Using Electroencephalogram (EEG) by Applying Online Multitask Learning Algorithms (OMTL).
    Jebelli H; Mahdi Khalili M; Lee S
    IEEE J Biomed Health Inform; 2019 Sep; 23(5):1928-1939. PubMed ID: 30235150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards an anxiety and stress recognition system for academic environments based on physiological features.
    Rodríguez-Arce J; Lara-Flores L; Portillo-Rodríguez O; Martínez-Méndez R
    Comput Methods Programs Biomed; 2020 Jul; 190():105408. PubMed ID: 32139112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying Machine Learning to Daily-Life Data From the TrackYourTinnitus Mobile Health Crowdsensing Platform to Predict the Mobile Operating System Used With High Accuracy: Longitudinal Observational Study.
    Pryss R; Schlee W; Hoppenstedt B; Reichert M; Spiliopoulou M; Langguth B; Breitmayer M; Probst T
    J Med Internet Res; 2020 Jun; 22(6):e15547. PubMed ID: 32602842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A prospective, randomized, single-blinded, crossover trial to investigate the effect of a wearable device in addition to a daily symptom diary for the remote early detection of SARS-CoV-2 infections (COVID-RED): a structured summary of a study protocol for a randomized controlled trial.
    Brakenhoff TB; Franks B; Goodale BM; van de Wijgert J; Montes S; Veen D; Fredslund EK; Rispens T; Risch L; Dowling AV; Folarin AA; Bruijning P; Dobson R; Heikamp T; Klaver P; Cronin M; Grobbee DE;
    Trials; 2021 Jun; 22(1):412. PubMed ID: 34158099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress Detection Using Wearable Physiological and Sociometric Sensors.
    Mozos OM; Sandulescu V; Andrews S; Ellis D; Bellotto N; Dobrescu R; Ferrandez JM
    Int J Neural Syst; 2017 Mar; 27(2):1650041. PubMed ID: 27440466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A prospective, randomized, single-blinded, crossover trial to investigate the effect of a wearable device in addition to a daily symptom diary for the Remote Early Detection of SARS-CoV-2 infections (COVID-RED): a structured summary of a study protocol for a randomized controlled trial.
    Brakenhoff TB; Franks B; Goodale BM; van de Wijgert J; Montes S; Veen D; Fredslund EK; Rispens T; Risch L; Dowling AV; Folarin AA; Bruijning P; Dobson R; Heikamp T; Klaver P; Cronin M; Grobbee DE;
    Trials; 2021 Oct; 22(1):694. PubMed ID: 34635140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy and Effectiveness of Advanced Hearing Aid Directional and Noise Reduction Technologies for Older Adults With Mild to Moderate Hearing Loss.
    Wu YH; Stangl E; Chipara O; Hasan SS; DeVries S; Oleson J
    Ear Hear; 2019; 40(4):805-822. PubMed ID: 30379683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A system for automatic detection of momentary stress in naturalistic settings.
    Gaggioli A; Pioggia G; Tartarisco G; Baldus G; Ferro M; Cipresso P; Serino S; Popleteev A; Gabrielli S; Maimone R; Riva G
    Stud Health Technol Inform; 2012; 181():182-6. PubMed ID: 22954852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone.
    Kim H; Lee S; Lee S; Hong S; Kang H; Kim N
    JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14149. PubMed ID: 31621642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying Objective Physiological Markers and Modifiable Behaviors for Self-Reported Stress and Mental Health Status Using Wearable Sensors and Mobile Phones: Observational Study.
    Sano A; Taylor S; McHill AW; Phillips AJ; Barger LK; Klerman E; Picard R
    J Med Internet Res; 2018 Jun; 20(6):e210. PubMed ID: 29884610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection.
    AlShorman O; Masadeh M; Heyat MBB; Akhtar F; Almahasneh H; Ashraf GM; Alexiou A
    J Integr Neurosci; 2022 Jan; 21(1):20. PubMed ID: 35164456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Objective stress monitoring based on wearable sensors in everyday settings.
    Han HJ; Labbaf S; Borelli JL; Dutt N; Rahmani AM
    J Med Eng Technol; 2020 May; 44(4):177-189. PubMed ID: 32589065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construct Validity of the Ecological Momentary Assessment in Audiology Research.
    Wu YH; Stangl E; Zhang X; Bentler RA
    J Am Acad Audiol; 2015; 26(10):872-84. PubMed ID: 26554491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. StressHacker: Towards Practical Stress Monitoring in the Wild with Smartwatches.
    Hao T; Walter KN; Ball MJ; Chang HY; Sun S; Zhu X
    AMIA Annu Symp Proc; 2017; 2017():830-838. PubMed ID: 29854149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.