These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32033353)

  • 41. Effects of disulfide bond and cholesterol derivatives on human calcitonin amyloid formation.
    Lantz R; Busbee B; Wojcikiewicz EP; Du D
    Biopolymers; 2020 May; 111(5):e23343. PubMed ID: 31804717
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of core region from egg white lysozyme forming amyloid fibrils.
    Tokunaga Y; Sakakibara Y; Kamada Y; Watanabe K; Sugimoto Y
    Int J Biol Sci; 2013; 9(2):219-27. PubMed ID: 23459392
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deficiency of disulfide bonds facilitating fibrillogenesis of endostatin.
    He Y; Zhou H; Tang H; Luo Y
    J Biol Chem; 2006 Jan; 281(2):1048-57. PubMed ID: 16269408
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The extreme N-terminal region of human apolipoprotein A-I has a strong propensity to form amyloid fibrils.
    Adachi E; Kosaka A; Tsuji K; Mizuguchi C; Kawashima H; Shigenaga A; Nagao K; Akaji K; Otaka A; Saito H
    FEBS Lett; 2014 Jan; 588(3):389-94. PubMed ID: 24316228
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nicking and fragmentation are responsible for α-lactalbumin amyloid fibril formation at acidic pH and elevated temperature.
    Rahamtullah ; Mishra R
    Protein Sci; 2021 Sep; 30(9):1919-1934. PubMed ID: 34107116
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion.
    Mishra R; Sörgjerd K; Nyström S; Nordigården A; Yu YC; Hammarström P
    J Mol Biol; 2007 Feb; 366(3):1029-44. PubMed ID: 17196616
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein Engineering Reveals Mechanisms of Functional Amyloid Formation in Pseudomonas aeruginosa Biofilms.
    Bleem A; Christiansen G; Madsen DJ; Maric H; Strømgaard K; Bryers JD; Daggett V; Meyer RL; Otzen DE
    J Mol Biol; 2018 Oct; 430(20):3751-3763. PubMed ID: 29964047
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential effects of DTT on HEWL amyloid fibrillation and fibril morphology at different pH.
    Mitra A; Mitra A; Sarkar N
    Biophys Chem; 2023 Mar; 294():106962. PubMed ID: 36716681
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Disulfide bond formation significantly accelerates the assembly of Ure2p fibrils because of the proximity of a potential amyloid stretch.
    Fei L; Perrett S
    J Biol Chem; 2009 Apr; 284(17):11134-41. PubMed ID: 19258323
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants.
    Lomakin A; Chung DS; Benedek GB; Kirschner DA; Teplow DB
    Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1125-9. PubMed ID: 8577726
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Amyloid-like fibril formation by tachykinin neuropeptides and its relevance to amyloid β-protein aggregation and toxicity.
    Singh PK; Maji SK
    Cell Biochem Biophys; 2012 Sep; 64(1):29-44. PubMed ID: 22628076
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aggregation properties of a short peptide that mediates amyloid fibril formation in model proteins unrelated to disease.
    Chaudhary N; Singh S; Nagaraj R
    J Biosci; 2011 Sep; 36(4):679-89. PubMed ID: 21857114
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant.
    Lee AS; Galea C; DiGiammarino EL; Jun B; Murti G; Ribeiro RC; Zambetti G; Schultz CP; Kriwacki RW
    J Mol Biol; 2003 Mar; 327(3):699-709. PubMed ID: 12634062
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-assembly of ovalbumin into amyloid and non-amyloid fibrils.
    Lara C; Gourdin-Bertin S; Adamcik J; Bolisetty S; Mezzenga R
    Biomacromolecules; 2012 Dec; 13(12):4213-21. PubMed ID: 23098330
    [TBL] [Abstract][Full Text] [Related]  

  • 55. α-Synuclein aggregation at low concentrations.
    Afitska K; Fucikova A; Shvadchak VV; Yushchenko DA
    Biochim Biophys Acta Proteins Proteom; 2019; 1867(7-8):701-709. PubMed ID: 31096048
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A comparative study of fibrillation kinetics of two homologous proteins under identical solution condition.
    Chaudhary AP; Vispute NH; Shukla VK; Ahmad B
    Biochimie; 2017 Jan; 132():75-84. PubMed ID: 27825804
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modulation of pathway of insulin fibrillation by a small molecule helix inducer 2,2,2-trifluoroethanol.
    Banerjee V; Das KP
    Colloids Surf B Biointerfaces; 2012 Apr; 92():142-50. PubMed ID: 22178183
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reduction of a disulfide-constrained oligo-glutamate peptide triggers self-assembly of β
    Dec R; Guza M; Dzwolak W
    Int J Biol Macromol; 2020 Nov; 162():866-872. PubMed ID: 32593758
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism.
    VandenAkker CC; Schleeger M; Bruinen AL; Deckert-Gaudig T; Velikov KP; Heeren RM; Deckert V; Bonn M; Koenderink GH
    J Phys Chem B; 2016 Sep; 120(34):8809-17. PubMed ID: 27487391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.