BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

957 related articles for article (PubMed ID: 32033589)

  • 1. Eleven grand challenges in single-cell data science.
    Lähnemann D; Köster J; Szczurek E; McCarthy DJ; Hicks SC; Robinson MD; Vallejos CA; Campbell KR; Beerenwinkel N; Mahfouz A; Pinello L; Skums P; Stamatakis A; Attolini CS; Aparicio S; Baaijens J; Balvert M; Barbanson B; Cappuccio A; Corleone G; Dutilh BE; Florescu M; Guryev V; Holmer R; Jahn K; Lobo TJ; Keizer EM; Khatri I; Kielbasa SM; Korbel JO; Kozlov AM; Kuo TH; Lelieveldt BPF; Mandoiu II; Marioni JC; Marschall T; Mölder F; Niknejad A; Rączkowska A; Reinders M; Ridder J; Saliba AE; Somarakis A; Stegle O; Theis FJ; Yang H; Zelikovsky A; McHardy AC; Raphael BJ; Shah SP; Schönhuth A
    Genome Biol; 2020 Feb; 21(1):31. PubMed ID: 32033589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hitchhiker's guide to single-cell transcriptomics and data analysis pipelines.
    Nayak R; Hasija Y
    Genomics; 2021 Mar; 113(2):606-619. PubMed ID: 33485955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives.
    Dal Molin A; Di Camillo B
    Brief Bioinform; 2019 Jul; 20(4):1384-1394. PubMed ID: 29394315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell genomics to understand disease pathogenesis.
    Nomura S
    J Hum Genet; 2021 Jan; 66(1):75-84. PubMed ID: 32951011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WEDGE: imputation of gene expression values from single-cell RNA-seq datasets using biased matrix decomposition.
    Hu Y; Li B; Zhang W; Liu N; Cai P; Chen F; Qu K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imputing single-cell RNA-seq data by considering cell heterogeneity and prior expression of dropouts.
    Zhang L; Zhang S
    J Mol Cell Biol; 2021 Apr; 13(1):29-40. PubMed ID: 33002136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single Cell Technologies: Beyond Microfluidics.
    Li H; Humphreys BD
    Kidney360; 2021 Jul; 2(7):1196-1204. PubMed ID: 35368355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational methods for the integrative analysis of single-cell data.
    Forcato M; Romano O; Bicciato S
    Brief Bioinform; 2021 Jan; 22(1):20-29. PubMed ID: 32363378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A graph-based algorithm for RNA-seq data normalization.
    Tran DT; Bhaskara A; Kuberan B; Might M
    PLoS One; 2020; 15(1):e0227760. PubMed ID: 31978105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data.
    Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X
    Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FIPRESCI: droplet microfluidics based combinatorial indexing for massive-scale 5'-end single-cell RNA sequencing.
    Li Y; Huang Z; Zhang Z; Wang Q; Li F; Wang S; Ji X; Shu S; Fang X; Jiang L
    Genome Biol; 2023 Apr; 24(1):70. PubMed ID: 37024957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linked optical and gene expression profiling of single cells at high-throughput.
    Zhang JQ; Siltanen CA; Liu L; Chang KC; Gartner ZJ; Abate AR
    Genome Biol; 2020 Feb; 21(1):49. PubMed ID: 32093753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing.
    Datlinger P; Rendeiro AF; Boenke T; Senekowitsch M; Krausgruber T; Barreca D; Bock C
    Nat Methods; 2021 Jun; 18(6):635-642. PubMed ID: 34059827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet-based single cell RNAseq tools: a practical guide.
    Salomon R; Kaczorowski D; Valdes-Mora F; Nordon RE; Neild A; Farbehi N; Bartonicek N; Gallego-Ortega D
    Lab Chip; 2019 May; 19(10):1706-1727. PubMed ID: 30997473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data generation and network reconstruction strategies for single cell transcriptomic profiles of CRISPR-mediated gene perturbations.
    Holding AN; Cook HV; Markowetz F
    Biochim Biophys Acta Gene Regul Mech; 2020 Jun; 1863(6):194441. PubMed ID: 31756390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads.
    De Rop FV; Ismail JN; Bravo González-Blas C; Hulselmans GJ; Flerin CC; Janssens J; Theunis K; Christiaens VM; Wouters J; Marcassa G; de Wit J; Poovathingal S; Aerts S
    Elife; 2022 Feb; 11():. PubMed ID: 35195064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances and challenges in single-cell RNA-seq of microbial communities.
    Imdahl F; Saliba AE
    Curr Opin Microbiol; 2020 Oct; 57():102-110. PubMed ID: 33160164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible comparison of batch correction methods for single-cell RNA-seq using BatchBench.
    Chazarra-Gil R; van Dongen S; Kiselev VY; Hemberg M
    Nucleic Acids Res; 2021 Apr; 49(7):e42. PubMed ID: 33524142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Cell RNA Sequencing to Disentangle the Blood System.
    Acosta J; Ssozi D; van Galen P
    Arterioscler Thromb Vasc Biol; 2021 Mar; 41(3):1012-1018. PubMed ID: 33441024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.