BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 32033948)

  • 41. Mechanisms of killing of Bacillus thuringiensis Al Hakam spores in a blast environment with and without iodic acid.
    Camilleri E; Korza G; Huesca-Espita LDC; Setlow B; Stamatis D; Setlow P
    J Appl Microbiol; 2020 May; 128(5):1378-1389. PubMed ID: 31916379
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spore photoproduct lyase from Bacillus subtilis spores is a novel iron-sulfur DNA repair enzyme which shares features with proteins such as class III anaerobic ribonucleotide reductases and pyruvate-formate lyases.
    Rebeil R; Sun Y; Chooback L; Pedraza-Reyes M; Kinsland C; Begley TP; Nicholson WL
    J Bacteriol; 1998 Sep; 180(18):4879-85. PubMed ID: 9733691
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanisms for the prevention of damage to DNA in spores of Bacillus species.
    Setlow P
    Annu Rev Microbiol; 1995; 49():29-54. PubMed ID: 8561462
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanisms of killing of Bacillus subtilis spores by Decon and Oxone, two general decontaminants for biological agents.
    Young SB; Setlow P
    J Appl Microbiol; 2004; 96(2):289-301. PubMed ID: 14723690
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Treatment with oxidizing agents damages the inner membrane of spores of Bacillus subtilis and sensitizes spores to subsequent stress.
    Cortezzo DE; Koziol-Dube K; Setlow B; Setlow P
    J Appl Microbiol; 2004; 97(4):838-52. PubMed ID: 15357734
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy.
    Wang S; Shen A; Setlow P; Li YQ
    J Bacteriol; 2015 Jul; 197(14):2361-73. PubMed ID: 25939833
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inactivation action spectra of Bacillus subtilis spores in extended ultraviolet wavelengths (50-300 nm) obtained with synchrotron radiation.
    Munakata N; Saito M; Hieda K
    Photochem Photobiol; 1991 Nov; 54(5):761-8. PubMed ID: 1798752
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation.
    Slieman TA; Nicholson WL
    Appl Environ Microbiol; 2001 Mar; 67(3):1274-9. PubMed ID: 11229921
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Relevant factors affecting microbial surface decontamination by pulsed light.
    Levy C; Aubert X; Lacour B; Carlin F
    Int J Food Microbiol; 2012 Jan; 152(3):168-74. PubMed ID: 21924512
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Superiority of UV222 radiation by in situ aquatic electrode KrCl excimer in disinfecting waterborne pathogens: Mechanism and efficacy.
    Li T; Zhang Y; Gan J; Yu X; Wang L
    J Hazard Mater; 2023 Jun; 452():131292. PubMed ID: 36989776
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The spore coat is essential for Bacillus subtilis spore resistance to pulsed light, and pulsed light treatment eliminates some spore coat proteins.
    Clair G; Esbelin J; Malléa S; Bornard I; Carlin F
    Int J Food Microbiol; 2020 Jun; 323():108592. PubMed ID: 32315871
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms of killing of spores of Bacillus subtilis by iodine, glutaraldehyde and nitrous acid.
    Tennen R; Setlow B; Davis KL; Loshon CA; Setlow P
    J Appl Microbiol; 2000 Aug; 89(2):330-8. PubMed ID: 10971767
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The impact of inducing germination of Bacillus anthracis and Bacillus thuringiensis spores on potential secondary decontamination strategies.
    Omotade TO; Bernhards RC; Klimko CP; Matthews ME; Hill AJ; Hunter MS; Webster WM; Bozue JA; Welkos SL; Cote CK
    J Appl Microbiol; 2014 Dec; 117(6):1614-33. PubMed ID: 25196092
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective alpha/beta-type small acid-soluble proteins.
    Setlow B; Atluri S; Kitchel R; Koziol-Dube K; Setlow P
    J Bacteriol; 2006 Jun; 188(11):3740-7. PubMed ID: 16707666
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultraviolet-C inactivation and hydrophobicity of Bacillus subtilis and Bacillus velezensis spores isolated from extended shelf-life milk.
    Elegbeleye JA; Gervilla R; Roig-Sagues AX; Buys EM
    Int J Food Microbiol; 2021 Jul; 349():109231. PubMed ID: 34022614
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of DNA repair in Bacillus subtilis spore resistance.
    Setlow B; Setlow P
    J Bacteriol; 1996 Jun; 178(12):3486-95. PubMed ID: 8655545
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Binding of DNA to alpha/beta-type small, acid-soluble proteins from spores of Bacillus or Clostridium species prevents formation of cytosine dimers, cytosine-thymine dimers, and bipyrimidine photoadducts after UV irradiation.
    Fairhead H; Setlow P
    J Bacteriol; 1992 May; 174(9):2874-80. PubMed ID: 1569018
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New Thoughts on an Old Topic: Secrets of Bacterial Spore Resistance Slowly Being Revealed.
    Setlow P; Christie G
    Microbiol Mol Biol Rev; 2023 Jun; 87(2):e0008022. PubMed ID: 36927044
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation.
    Moeller R; Horneck G; Facius R; Stackebrandt E
    FEMS Microbiol Ecol; 2005 Jan; 51(2):231-6. PubMed ID: 16329871
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transitory germinative excision repair in Bacillus subtilis.
    Wang TC; Rupert CS
    J Bacteriol; 1977 Mar; 129(3):1313-9. PubMed ID: 403175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.