BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 32033952)

  • 1. Blakeslea trispora Photoreceptors: Identification and Functional Analysis.
    Luo W; Xue C; Zhao Y; Zhang H; Rao Z; Yu X
    Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32033952
    [No Abstract]   [Full Text] [Related]  

  • 2. Structure prediction and function characterization of WC-2 proteins in Blakeslea trispora.
    Ge X; Yuan Y; Li R; Zhang X; Xin Q
    Int Microbiol; 2021 Aug; 24(3):427-439. PubMed ID: 33973112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct white collar-1 genes control specific light responses in Mucor circinelloides.
    Silva F; Torres-Martínez S; Garre V
    Mol Microbiol; 2006 Aug; 61(4):1023-37. PubMed ID: 16879651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light induction of the carotenoid biosynthesis pathway in Blakeslea trispora.
    Quiles-Rosillo MD; Ruiz-Vázquez RM; Torres-Martínez S; Garre V
    Fungal Genet Biol; 2005 Feb; 42(2):141-53. PubMed ID: 15670712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Negative Regulator of Carotenogenesis in
    Luo W; Gong Z; Li N; Zhao Y; Zhang H; Yang X; Liu Y; Rao Z; Yu X
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31953331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light irradiation changes the regulation pattern of BtCrgA on carotenogenesis in Blakeslea trispora.
    Yang J; Zeng M; Wu H; Han Z; Du ZR; Yu X; Luo W
    FEMS Microbiol Lett; 2024 Jan; 371():. PubMed ID: 38200712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A RING-finger protein regulates carotenogenesis via proteolysis-independent ubiquitylation of a white collar-1-like activator.
    Silva F; Navarro E; Peñaranda A; Murcia-Flores L; Torres-Martínez S; Garre V
    Mol Microbiol; 2008 Nov; 70(4):1026-36. PubMed ID: 18976280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Blue-Light Photoreceptor
    Krobanan K; Liang SW; Chiu HC; Shen WC
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979837
    [No Abstract]   [Full Text] [Related]  

  • 9. Transcriptome sequencing and global analysis of blue light-responsive genes provide clues for high carotenoid yields in Blakeslea trispora.
    Ge X; Li R; Zhang X; Zhao J; Zhang Y; Xin Q
    Int Microbiol; 2022 May; 25(2):325-338. PubMed ID: 34746983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light regulates a Phycomyces blakesleeanus gene family similar to the carotenogenic repressor gene of Mucor circinelloides.
    Tagua VG; Navarro E; Gutiérrez G; Garre V; Corrochano LM
    Fungal Biol; 2020 May; 124(5):338-351. PubMed ID: 32389296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. White collar-1, a DNA binding transcription factor and a light sensor.
    He Q; Cheng P; Yang Y; Wang L; Gardner KH; Liu Y
    Science; 2002 Aug; 297(5582):840-3. PubMed ID: 12098705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate β-carotene over-producing strains by genetic engineering.
    Zhang Y; Navarro E; Cánovas-Márquez JT; Almagro L; Chen H; Chen YQ; Zhang H; Torres-Martínez S; Chen W; Garre V
    Microb Cell Fact; 2016 Jun; 15():99. PubMed ID: 27266994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, characterization and heterologous expression of the Blakeslea trispora gene encoding orotidine-5'-monophosphate decarboxylase.
    Quiles-Rosillo MD; Ruiz-Vázquez RM; Torres-Martínez S; Garre V
    FEMS Microbiol Lett; 2003 May; 222(2):229-36. PubMed ID: 12770712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilevel Regulation of Carotenoid Synthesis by Light and Active Oxygen in
    Luo W; Wang Y; Yang P; Qu Y; Yu X
    J Agric Food Chem; 2021 Sep; 69(37):10974-10988. PubMed ID: 34510898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning and functional expression of two key carotene synthetic genes derived from Blakeslea trispora into E. coli for increased β-carotene production.
    Sun J; Sun XX; Tang PW; Yuan QP
    Biotechnol Lett; 2012 Nov; 34(11):2077-82. PubMed ID: 22798040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of Streptomyces globisporus and Blakeslea trispora mutants with increased carotenoid content.
    Matselyukh BP; Matselyukh DY; Golembiovska SL; Polishchuk LV; Lavrinchuk VY
    Mikrobiol Z; 2013; 75(6):10-6. PubMed ID: 24450179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of mating-dependent transcription of Blakeslea trispora carotenoid biosynthesis genes carB and carRA by quantitative real-time PCR.
    Schmidt AD; Heinekamp T; Matuschek M; Liebmann B; Bollschweiler C; Brakhage AA
    Appl Microbiol Biotechnol; 2005 Jun; 67(4):549-55. PubMed ID: 15744487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The LOV-domain blue-light receptor LreA of the fungus Alternaria alternata binds predominantly FAD as chromophore and acts as a light and temperature sensor.
    Schuhmacher L; Heck S; Pitz M; Mathey E; Lamparter T; Blumhofer A; Leister K; Fischer R
    J Biol Chem; 2024 May; 300(5):107238. PubMed ID: 38552736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blakeslea trispora genes for carotene biosynthesis.
    Rodríguez-Sáiz M; Paz B; De La Fuente JL; López-Nieto MJ; Cabri W; Barredo JL
    Appl Environ Microbiol; 2004 Sep; 70(9):5589-94. PubMed ID: 15345447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carotenoid synthesis and phytoene synthase activity during mating of Blakeslea trispora.
    Breitenbach J; Fraser PD; Sandmann G
    Phytochemistry; 2012 Apr; 76():40-5. PubMed ID: 22281381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.