BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 32033952)

  • 21. Ubiquinone and carotene production in the Mucorales Blakeslea and Phycomyces.
    Kuzina V; Cerdá-Olmedo E
    Appl Microbiol Biotechnol; 2007 Oct; 76(5):991-9. PubMed ID: 17609943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromophore exchange in the blue light-sensitive photoreceptor YtvA from Bacillus subtilis.
    Mansurova M; Scheercousse P; Simon J; Kluth M; Gärtner W
    Chembiochem; 2011 Mar; 12(4):641-6. PubMed ID: 21259411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation.
    Schwerdtfeger C; Linden H
    EMBO J; 2003 Sep; 22(18):4846-55. PubMed ID: 12970196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved β-carotene biosynthesis and gene transcription in Blakeslea trispora with arachidonic acid.
    Hu X; Sun J; Yuan Q
    Biotechnol Lett; 2012 Nov; 34(11):2107-11. PubMed ID: 22829287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photobiology in the Zygomycota: multiple photoreceptor genes for complex responses to light.
    Corrochano LM; Garre V
    Fungal Genet Biol; 2010 Nov; 47(11):893-9. PubMed ID: 20466063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biological Significance of Photoreceptor Photocycle Length: VIVID Photocycle Governs the Dynamic VIVID-White Collar Complex Pool Mediating Photo-adaptation and Response to Changes in Light Intensity.
    Dasgupta A; Chen CH; Lee C; Gladfelter AS; Dunlap JC; Loros JJ
    PLoS Genet; 2015 May; 11(5):e1005215. PubMed ID: 25978382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conformational switching in the fungal light sensor Vivid.
    Zoltowski BD; Schwerdtfeger C; Widom J; Loros JJ; Bilwes AM; Dunlap JC; Crane BR
    Science; 2007 May; 316(5827):1054-7. PubMed ID: 17510367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. LOV takes a pick: thermodynamic and structural aspects of the flavin-LOV-interaction of the blue-light sensitive photoreceptor YtvA from Bacillus subtilis.
    Dorn M; Jurk M; Wartenberg A; Hahn A; Schmieder P
    PLoS One; 2013; 8(11):e81268. PubMed ID: 24278408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii.
    Kasahara M; Swartz TE; Olney MA; Onodera A; Mochizuki N; Fukuzawa H; Asamizu E; Tabata S; Kanegae H; Takano M; Christie JM; Nagatani A; Briggs WR
    Plant Physiol; 2002 Jun; 129(2):762-73. PubMed ID: 12068117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A negative regulator of light-inducible carotenogenesis in Mucor circinelloides.
    Navarro E; Lorca-Pascual JM; Quiles-Rosillo MD; Nicolás FE; Garre V; Torres-Martínez S; Ruiz-Vázquez RM
    Mol Genet Genomics; 2001 Nov; 266(3):463-70. PubMed ID: 11713676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genes involved in carotene synthesis and mating in Blakeslea trispora.
    Kuzina V; Ramírez-Medina H; Visser H; van Ooyen AJ; Cerdá-Olmedo E; van den Berg JA
    Curr Genet; 2008 Sep; 54(3):143-52. PubMed ID: 18677485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel blue light-sensitive proteins from a metagenomic approach.
    Pathak GP; Ehrenreich A; Losi A; Streit WR; Gärtner W
    Environ Microbiol; 2009 Sep; 11(9):2388-99. PubMed ID: 19538504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photomorphogenesis in the hypogeous fungus Tuber borchii: isolation and characterization of Tbwc-1, the homologue of the blue-light photoreceptor of Neurospora crassa.
    Ambra R; Grimaldi B; Zamboni S; Filetici P; Macino G; Ballario P
    Fungal Genet Biol; 2004 Jul; 41(7):688-97. PubMed ID: 15275664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protoplast fusion between Blakeslea trispora 14,271 (+) and 14,272 (-) enhanced the yield of lycopene and β-carotene.
    Wang Y; Wang Y; Chen X; Gao N; Wu Y; Zhang H
    World J Microbiol Biotechnol; 2021 Mar; 37(4):58. PubMed ID: 33655368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclase inhibitor tripropylamine significantly enhanced lycopene accumulation in Blakeslea trispora.
    Wang Y; Chen X; Hong X; Du S; Liu C; Gong W; Chen D
    J Biosci Bioeng; 2016 Nov; 122(5):570-576. PubMed ID: 27238833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of carotenoids produced from cheese whey by Blakeslea trispora in submerged fermentation.
    Varzakakou M; Roukas T
    Prep Biochem Biotechnol; 2010; 40(1):76-82. PubMed ID: 20024797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SR5AL serves as a key regulatory gene in lycopene biosynthesis by Blakeslea trispora.
    Wang Q; Chen Y; Yang Q; Zhao J; Feng L; Wang M
    Microb Cell Fact; 2022 Jun; 21(1):126. PubMed ID: 35752808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of vitamin A on the biosynthesis of carotene by Blakeslea trispora].
    Feofilova EP; Bekhtereva MN
    Mikrobiologiia; 1976; 45():557-8. PubMed ID: 1004258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of two Pleurotus ostreatus blue light receptor genes (PoWC-1 and PoWC-2) and in vivo confirmation of complex PoWC-12 formation through yeast two hybrid system.
    Qi Y; Sun X; Ma L; Wen Q; Qiu L; Shen J
    Fungal Biol; 2020 Jan; 124(1):8-14. PubMed ID: 31892380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Stability of the polyribosomes of Blakeslea trispora Thaxter during normal translation, its stimulation and inhibition].
    Arbuzov VA; Debov SS
    Biokhimiia; 1976; 41(7):1208-15. PubMed ID: 999980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.