These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 32034137)

  • 1. Determining sequencing depth in a single-cell RNA-seq experiment.
    Zhang MJ; Ntranos V; Tse D
    Nat Commun; 2020 Feb; 11(1):774. PubMed ID: 32034137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations.
    van den Brink SC; Sage F; Vértesy Á; Spanjaard B; Peterson-Maduro J; Baron CS; Robin C; van Oudenaarden A
    Nat Methods; 2017 Sep; 14(10):935-936. PubMed ID: 28960196
    [No Abstract]   [Full Text] [Related]  

  • 3. deepMc: Deep Matrix Completion for Imputation of Single-Cell RNA-seq Data.
    Mongia A; Sengupta D; Majumdar A
    J Comput Biol; 2020 Jul; 27(7):1011-1019. PubMed ID: 31657645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The triumphs and limitations of computational methods for scRNA-seq.
    Kharchenko PV
    Nat Methods; 2021 Jul; 18(7):723-732. PubMed ID: 34155396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inference of Gene Co-expression Networks from Single-Cell RNA-Sequencing Data.
    Lamere AT; Li J
    Methods Mol Biol; 2019; 1935():141-153. PubMed ID: 30758825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CellBIC: bimodality-based top-down clustering of single-cell RNA sequencing data reveals hierarchical structure of the cell type.
    Kim J; Stanescu DE; Won KJ
    Nucleic Acids Res; 2018 Nov; 46(21):e124. PubMed ID: 30102368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering.
    Specht AT; Li J
    Bioinformatics; 2017 Mar; 33(5):764-766. PubMed ID: 27993778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and computational analysis of single-cell RNA-sequencing experiments.
    Bacher R; Kendziorski C
    Genome Biol; 2016 Apr; 17():63. PubMed ID: 27052890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power analysis of single-cell RNA-sequencing experiments.
    Svensson V; Natarajan KN; Ly LH; Miragaia RJ; Labalette C; Macaulay IC; Cvejic A; Teichmann SA
    Nat Methods; 2017 Apr; 14(4):381-387. PubMed ID: 28263961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive survey of regulatory network inference methods using single cell RNA sequencing data.
    Nguyen H; Tran D; Tran B; Pehlivan B; Nguyen T
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments.
    Leng N; Chu LF; Barry C; Li Y; Choi J; Li X; Jiang P; Stewart RM; Thomson JA; Kendziorski C
    Nat Methods; 2015 Oct; 12(10):947-950. PubMed ID: 26301841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational approaches for interpreting scRNA-seq data.
    Rostom R; Svensson V; Teichmann SA; Kar G
    FEBS Lett; 2017 Aug; 591(15):2213-2225. PubMed ID: 28524227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudotime Reconstruction Using TSCAN.
    Ji Z; Ji H
    Methods Mol Biol; 2019; 1935():115-124. PubMed ID: 30758823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embracing the dropouts in single-cell RNA-seq analysis.
    Qiu P
    Nat Commun; 2020 Mar; 11(1):1169. PubMed ID: 32127540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data.
    Jia C; Hu Y; Kelly D; Kim J; Li M; Zhang NR
    Nucleic Acids Res; 2017 Nov; 45(19):10978-10988. PubMed ID: 29036714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating measures of association for single-cell transcriptomics.
    Skinnider MA; Squair JW; Foster LJ
    Nat Methods; 2019 May; 16(5):381-386. PubMed ID: 30962620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network embedding-based representation learning for single cell RNA-seq data.
    Li X; Chen W; Chen Y; Zhang X; Gu J; Zhang MQ
    Nucleic Acids Res; 2017 Nov; 45(19):e166. PubMed ID: 28977434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Falco: a quick and flexible single-cell RNA-seq processing framework on the cloud.
    Yang A; Troup M; Lin P; Ho JW
    Bioinformatics; 2017 Mar; 33(5):767-769. PubMed ID: 28025200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scPADGRN: A preconditioned ADMM approach for reconstructing dynamic gene regulatory network using single-cell RNA sequencing data.
    Zheng X; Huang Y; Zou X
    PLoS Comput Biol; 2020 Jul; 16(7):e1007471. PubMed ID: 32716923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bias, robustness and scalability in single-cell differential expression analysis.
    Soneson C; Robinson MD
    Nat Methods; 2018 Apr; 15(4):255-261. PubMed ID: 29481549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.