BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32034824)

  • 1. Positive selection of digestive proteases in Daphnia: A mechanism for local adaptation to cyanobacterial protease inhibitors.
    Schwarzenberger A; Hasselmann M; Von Elert E
    Mol Ecol; 2020 Mar; 29(5):912-919. PubMed ID: 32034824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copy number variation of a protease gene of Daphnia: Its role in population tolerance.
    Schwarzenberger A; Keith NR; Jackson CE; Von Elert E
    J Exp Zool A Ecol Integr Physiol; 2017 Feb; 327(2-3):119-126. PubMed ID: 29356420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene expression and activity of digestive proteases in Daphnia: effects of cyanobacterial protease inhibitors.
    Schwarzenberger A; Zitt A; Kroth P; Mueller S; Von Elert E
    BMC Physiol; 2010 May; 10():6. PubMed ID: 20441581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterologous expression and characterization of a novel serine protease from Daphnia magna: A possible role in susceptibility to toxic cyanobacteria.
    Lange J; Demir F; Huesgen PF; Baumann U; von Elert E; Pichlo C
    Aquat Toxicol; 2018 Dec; 205():140-147. PubMed ID: 30384195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanisms of tolerance to cyanobacterial protease inhibitors revealed by clonal differences in Daphnia magna.
    Schwarzenberger A; Kuster CJ; Von Elert E
    Mol Ecol; 2012 Oct; 21(19):4898-911. PubMed ID: 22943151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Daphnia populations are similar but not identical in tolerance to different protease inhibitors.
    Schwarzenberger A; Ilić M; Von Elert E
    Harmful Algae; 2021 Jun; 106():102062. PubMed ID: 34154785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of nutrient limitation of cyanobacteria on protease inhibitor production and fitness of Daphnia magna.
    Schwarzenberger A; Sadler T; Von Elert E
    J Exp Biol; 2013 Oct; 216(Pt 19):3649-55. PubMed ID: 23788705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interspecific differences between D. pulex and D. magna in tolerance to cyanobacteria with protease inhibitors.
    Kuster CJ; Von Elert E
    PLoS One; 2013; 8(5):e62658. PubMed ID: 23650523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering the genetic basis of microcystin tolerance.
    Schwarzenberger A; Sadler T; Motameny S; Ben-Khalifa K; Frommolt P; Altmüller J; Konrad K; von Elert E
    BMC Genomics; 2014 Sep; 15(1):776. PubMed ID: 25199885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of proteases in guts of Daphnia magna and their inhibition by Microcystis aeruginosa PCC 7806.
    Agrawal MK; Zitt A; Bagchi D; Weckesser J; Bagchi SN; von Elert E
    Environ Toxicol; 2005 Jun; 20(3):314-22. PubMed ID: 15892063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyanobacteria Affect Fitness and Genetic Structure of Experimental Daphnia Populations.
    Drugă B; Turko P; Spaak P; Pomati F
    Environ Sci Technol; 2016 Apr; 50(7):3416-24. PubMed ID: 26943751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanobacterial protease inhibitors lead to maternal transfer of increased protease gene expression in Daphnia.
    Schwarzenberger A; Von Elert E
    Oecologia; 2013 May; 172(1):11-20. PubMed ID: 23053237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Host-genotype dependent gut microbiota drives zooplankton tolerance to toxic cyanobacteria.
    Macke E; Callens M; De Meester L; Decaestecker E
    Nat Commun; 2017 Nov; 8(1):1608. PubMed ID: 29151571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inducible tolerance to dietary protease inhibitors in Daphnia magna.
    von Elert E; Zitt A; Schwarzenberger A
    J Exp Biol; 2012 Jun; 215(Pt 12):2051-9. PubMed ID: 22623193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative Effects of Cyanotoxins and Adaptative Responses of
    Schwarzenberger A
    Toxins (Basel); 2022 Nov; 14(11):. PubMed ID: 36356020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arginine kinase in the cladoceran Daphnia magna: cDNA sequencing and expression is associated with resistance to toxic Microcystis.
    Lyu K; Zhang L; Zhu X; Cui G; Wilson AE; Yang Z
    Aquat Toxicol; 2015 Mar; 160():13-21. PubMed ID: 25575127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution melting analysis: a genotyping tool for population studies on Daphnia.
    Kuster CJ; Von Elert E
    Mol Ecol Resour; 2012 Nov; 12(6):1048-57. PubMed ID: 22925691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute, chronic and reproductive toxicity of complex cyanobacterial blooms in Daphnia magna and the role of microcystins.
    Smutná M; Babica P; Jarque S; Hilscherová K; Maršálek B; Haeba M; Bláha L
    Toxicon; 2014 Mar; 79():11-8. PubMed ID: 24412459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression and activity of digestive enzymes of Daphnia pulex in response to food quality differences.
    Schwarzenberger A; Fink P
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Apr; 218():23-29. PubMed ID: 29427614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of Daphnia's antioxidant system to spatial heterogeneity in Cyanobacteria concentrations in a lowland reservoir.
    Wojtal-Frankiewicz A; Bernasińska J; Frankiewicz P; Gwoździński K; Jurczak T
    PLoS One; 2014; 9(11):e112597. PubMed ID: 25380273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.