BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32034824)

  • 41. Changes in iTRAQ-Based Proteomic Profiling of the Cladoceran Daphnia magna Exposed to Microcystin-Producing and Microcystin-Free Microcystis aeruginosa.
    Lyu K; Meng Q; Zhu X; Dai D; Zhang L; Huang Y; Yang Z
    Environ Sci Technol; 2016 May; 50(9):4798-807. PubMed ID: 27057760
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Control of a toxic cyanobacterial bloom species, Microcystis aeruginosa, using the peptide HPA3NT3-A2.
    Han SI; Kim S; Choi KY; Lee C; Park Y; Choi YE
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):32255-32265. PubMed ID: 31598929
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Toxic microcystis reduces tolerance of daphnia to increased chloride, and low chloride alleviates the harm of toxic microcystis to daphnia.
    Li Y; Zhu Y; Ma L; Huang J; Sun Y; Zhang L; Lyu K; Yang Z
    Chemosphere; 2020 Dec; 260():127594. PubMed ID: 32673874
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dietary exposure of Daphnia to microcystins: no in vivo relevance of biotransformation.
    Sadler T; von Elert E
    Aquat Toxicol; 2014 May; 150():73-82. PubMed ID: 24642294
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata).
    von Elert E; Martin-Creuzburg D; Le Coz JR
    Proc Biol Sci; 2003 Jun; 270(1520):1209-14. PubMed ID: 12816661
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of cyanobacteria toxicity in tropical reservoirs using crude extracts bioassay with cladocerans.
    Okumura DT; Sotero-Santos RB; Takenaka RA; Rocha O
    Ecotoxicology; 2007 Mar; 16(2):263-70. PubMed ID: 17131179
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transgenerational effects of microcystin-LR on Daphnia magna.
    Ortiz-Rodríguez R; Dao TS; Wiegand C
    J Exp Biol; 2012 Aug; 215(Pt 16):2795-805. PubMed ID: 22837451
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton.
    Yampolsky LY; Schaer TM; Ebert D
    Proc Biol Sci; 2014 Feb; 281(1776):20132744. PubMed ID: 24352948
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphnia pulicaria.
    Rohrlack T; Christoffersen K; Kaebernick M; Neilan BA
    Appl Environ Microbiol; 2004 Aug; 70(8):5047-50. PubMed ID: 15294849
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential tolerance to cyanobacterial exposure between geographically distinct populations of Perca fluviatilis.
    Persson KJ; Bergström K; Mazur-Marzec H; Legrand C
    Toxicon; 2013 Dec; 76():178-86. PubMed ID: 24018361
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reversed evolution of grazer resistance to cyanobacteria.
    Isanta-Navarro J; Hairston NG; Beninde J; Meyer A; Straile D; Möst M; Martin-Creuzburg D
    Nat Commun; 2021 Mar; 12(1):1945. PubMed ID: 33782425
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genome-wide identification and structure-function studies of proteases and protease inhibitors in Cicer arietinum (chickpea).
    Sharma R; Suresh CG
    Comput Biol Med; 2015 Jan; 56():67-81. PubMed ID: 25464349
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biomonitoring of cyanobacterial blooms in Polish water reservoir and the cytotoxicity and genotoxicity of selected cyanobacterial extracts.
    Palus J; Dziubałtowska E; Stańczyk M; Lewińska D; Mankiewicz-Boczek J; Izydorczyk K; Bonisławska A; Jurczak T; Zalewski M; Wasowicz W
    Int J Occup Med Environ Health; 2007; 20(1):48-65. PubMed ID: 17509970
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Consumer adaptation mediates top-down regulation across a productivity gradient.
    Chislock MF; Sarnelle O; Jernigan LM; Anderson VR; Abebe A; Wilson AE
    Oecologia; 2019 May; 190(1):195-205. PubMed ID: 30989361
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Controlling Harmful Cyanobacteria: Taxa-Specific Responses of Cyanobacteria to Grazing by Large-Bodied Daphnia in a Biomanipulation Scenario.
    Urrutia-Cordero P; Ekvall MK; Hansson LA
    PLoS One; 2016; 11(4):e0153032. PubMed ID: 27043823
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transgenerational effects of cyanobacterial toxins on a tropical micro-crustacean Daphnia lumholtzi across three generations.
    Dao TS; Vo TM; Wiegand C; Bui BT; Dinh KV
    Environ Pollut; 2018 Dec; 243(Pt B):791-799. PubMed ID: 30241003
    [TBL] [Abstract][Full Text] [Related]  

  • 57. β-N-methylamino-L-alanine (BMAA) uptake by the animal model, Daphnia magna and subsequent oxidative stress.
    Esterhuizen-Londt M; Wiegand C; Downing TG
    Toxicon; 2015 Jun; 100():20-6. PubMed ID: 25841344
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Maternal effects of inducible tolerance against the toxic cyanobacterium Microcystis aeruginosa in the grazer Daphnia carinata.
    Jiang X; Yang W; Zhao S; Liang H; Zhao Y; Chen L; Li R
    Environ Pollut; 2013 Jul; 178():142-6. PubMed ID: 23570781
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia).
    Agha R; Saebelfeld M; Manthey C; Rohrlack T; Wolinska J
    Sci Rep; 2016 Oct; 6():35039. PubMed ID: 27733762
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi-locus genetic evidence for rapid ecologically based speciation in Daphnia.
    Pfrender ME; Spitze K; Lehman N
    Mol Ecol; 2000 Nov; 9(11):1717-35. PubMed ID: 11091309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.