BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32035071)

  • 1. Acute sources of mitochondrial NAD
    Chinopoulos C
    Exp Neurol; 2020 May; 327():113218. PubMed ID: 32035071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of 2-methoxy-1,4-naphtoquinone by mitochondrially-localized Nqo1 yielding NAD
    Ravasz D; Kacso G; Fodor V; Horvath K; Adam-Vizi V; Chinopoulos C
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):909-924. PubMed ID: 29746824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial diaphorases as NAD⁺ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition.
    Kiss G; Konrad C; Pour-Ghaz I; Mansour JJ; Németh B; Starkov AA; Adam-Vizi V; Chinopoulos C
    FASEB J; 2014 Apr; 28(4):1682-97. PubMed ID: 24391134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.
    Starkov AA; Fiskum G; Chinopoulos C; Lorenzo BJ; Browne SE; Patel MS; Beal MF
    J Neurosci; 2004 Sep; 24(36):7779-88. PubMed ID: 15356189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of NAD(H) from swollen yeast mitochondria.
    Bradshaw PC; Pfeiffer DR
    BMC Biochem; 2006 Jan; 7():3. PubMed ID: 16433924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α-Tocopherol administration blocks adaptive changes in cell NADH/NAD+ redox state and mitochondrial function leading to inhibition of gastric mucosa cell proliferation in rats.
    Olguín-Martínez M; Hernández-Espinosa DR; Hernández-Muñoz R
    Free Radic Biol Med; 2013 Dec; 65():1090-1100. PubMed ID: 23994576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation and reduction of pyridine nucleotides in alamethicin-permeabilized plant mitochondria.
    Johansson FI; Michalecka AM; Møller IM; Rasmusson AG
    Biochem J; 2004 May; 380(Pt 1):193-202. PubMed ID: 14972026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex I binds several mitochondrial NAD-coupled dehydrogenases.
    Sumegi B; Srere PA
    J Biol Chem; 1984 Dec; 259(24):15040-5. PubMed ID: 6439716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absence of NADH channeling in coupled reaction of mitochondrial malate dehydrogenase and complex I in alamethicin-permeabilized rat liver mitochondria.
    Kotlyar AB; Maklashina E; Cecchini G
    Biochem Biophys Res Commun; 2004 Jun; 318(4):987-91. PubMed ID: 15147970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The proton-translocating nicotinamide-adenine dinucleotide (phosphate) transhydrogenase of rat liver mitochondria.
    Moyle J; Mitchell P
    Biochem J; 1973 Mar; 132(3):571-85. PubMed ID: 4146799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems.
    Abbrescia DI; La Piana G; Lofrumento NE
    Arch Biochem Biophys; 2012 Feb; 518(2):157-63. PubMed ID: 22239987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatic mitochondrial respiration and transport of reducing equivalents in rats fed an energy dense diet.
    Iossa S; Mollica MP; Lionetti L; Barletta A; Liverini G
    Int J Obes Relat Metab Disord; 1995 Aug; 19(8):539-43. PubMed ID: 7489023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution to control of mitochondrial oxidative phosphorylation by supplement of reducing equivalents.
    Kunz W; Gellerich FN; Schild L
    Biochem Med Metab Biol; 1994 Jun; 52(1):65-75. PubMed ID: 7917469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MDH2 produced OAA is a metabolic switch rewiring the fuelling of respiratory chain and TCA cycle.
    Molinié T; Cougouilles E; David C; Cahoreau E; Portais JC; Mourier A
    Biochim Biophys Acta Bioenerg; 2022 Mar; 1863(3):148532. PubMed ID: 35063410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox imbalance and mitochondrial abnormalities in the diabetic lung.
    Wu J; Jin Z; Yan LJ
    Redox Biol; 2017 Apr; 11():51-59. PubMed ID: 27888691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae.
    Bakker BM; Overkamp KM; van Maris AJ ; Kötter P; Luttik MA; van Dijken JP ; Pronk JT
    FEMS Microbiol Rev; 2001 Jan; 25(1):15-37. PubMed ID: 11152939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of extensively oxidized low-density lipoprotein on mitochondrial function and reactive oxygen species in porcine aortic endothelial cells.
    Roy Chowdhury SK; Sangle GV; Xie X; Stelmack GL; Halayko AJ; Shen GX
    Am J Physiol Endocrinol Metab; 2010 Jan; 298(1):E89-98. PubMed ID: 19843872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria.
    Lund BO; Miller DM; Woods JS
    Biochem Pharmacol; 1993 May; 45(10):2017-24. PubMed ID: 8512585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.