These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32035382)

  • 1. Development of a process for the treatment of synthetic wastewater without energy inputs using the salinity gradient of wastewaters and a reverse electrodialysis stack.
    Ma P; Hao X; Galia A; Scialdone O
    Chemosphere; 2020 Jun; 248():125994. PubMed ID: 32035382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formate production from CO
    Tian Y; Li D; Liu G; Li C; Liu J; Wu J; Liu J; Feng Y
    Bioresour Technol; 2021 Jan; 320(Pt A):124292. PubMed ID: 33161313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse electrodialysis performed at pilot plant scale: Evaluation of redox processes and simultaneous generation of electric energy and treatment of wastewater.
    D'Angelo A; Tedesco M; Cipollina A; Galia A; Micale G; Scialdone O
    Water Res; 2017 Nov; 125():123-131. PubMed ID: 28843152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating Reverse-Electrodialysis Stacks with Flow Batteries for Improved Energy Recovery from Salinity Gradients and Energy Storage.
    Zhu X; Kim T; Rahimi M; Gorski CA; Logan BE
    ChemSusChem; 2017 Feb; 10(4):797-803. PubMed ID: 27911491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells.
    Cusick RD; Kim Y; Logan BE
    Science; 2012 Mar; 335(6075):1474-7. PubMed ID: 22383807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane capacitive deionization for low-salinity desalination in the reclamation of domestic wastewater effluents.
    Lee M; Fan CS; Chen YW; Chang KC; Chiueh PT; Hou CH
    Chemosphere; 2019 Nov; 235():413-422. PubMed ID: 31272001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced energy recovery using a cascaded reverse electrodialysis stack for salinity gradient power generation.
    Nam JY; Jwa E; Eom H; Kim H; Hwang K; Jeong N
    Water Res; 2021 Jul; 200():117255. PubMed ID: 34062402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active Control of Irreversible Faradic Reactions to Enhance the Performance of Reverse Electrodialysis for Energy Production from Salinity Gradients.
    Oh Y; Han JH; Kim H; Jeong N; Vermaas DA; Park JS; Chae S
    Environ Sci Technol; 2021 Aug; 55(16):11388-11396. PubMed ID: 34310128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation and improvement of a novel double-working-electrode electrochemical system for organic matter treatment from high-salinity wastewater.
    Yu H; Zhao M; Zhang L; Dong H; Yu H; Chen Z
    Environ Technol; 2017 Nov; 38(22):2907-2915. PubMed ID: 28084144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy capture from thermolytic solutions and simulated sunlight coupled with hydrogen peroxide production and wastewater remediation.
    Tian H; Wang Y; Pei Y
    Water Res; 2020 Mar; 170():115318. PubMed ID: 31805499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persulfate enhanced electrochemical oxidation of highly toxic cyanide-containing organic wastewater using boron-doped diamond anode.
    Yang W; Liu G; Chen Y; Miao D; Wei Q; Li H; Ma L; Zhou K; Liu L; Yu Z
    Chemosphere; 2020 Aug; 252():126499. PubMed ID: 32224356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable energy harvesting and on-site disinfection of natural seawater using reverse electrodialysis.
    Jwa E; Jeong N; Nam JY; Han JI
    Water Res; 2022 Jul; 220():118681. PubMed ID: 35689894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical removal of synthetic methyl orange dyeing wastewater by reverse electrodialysis reactor: Experiment and mineralizing model.
    Leng Q; Xu S; Wu X; Wang S; Jin D; Wang P; Wu D; Dong F
    Environ Res; 2022 Nov; 214(Pt 4):114064. PubMed ID: 35977587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of electrochemical hybrid systems for the treatment of real wastewaters from agri-food activities.
    Ghazouani M; Akrout H; Jellali S; Bousselmi L
    Sci Total Environ; 2019 Jan; 647():1651-1664. PubMed ID: 30180367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.
    Moreira FC; Boaventura RA; Brillas E; Vilar VJ
    Water Res; 2015 May; 75():95-108. PubMed ID: 25765168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AOX formation and elimination in the oxidative treatment of synthetic wastewaters in a UV-free surface reactor.
    Baycan N; Sengul F; Thomanetz E
    Environ Sci Pollut Res Int; 2005; 12(3):153-8. PubMed ID: 15986999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of macro-pollutants in oily wastewater obtained from soil remediation plant using electro-oxidation process.
    Zolfaghari M; Drogui P; Blais JF
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7748-7757. PubMed ID: 29290057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of energy from salinity gradients using capacitive reverse electro dialysis: a review.
    Ramasamy G; Rajkumar PK; Narayanan M
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63672-63681. PubMed ID: 33400126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new photoelectrochemical cell coupled with the Fenton reaction to remove pollutant and generate electricity under the drive of waste heat.
    Tian H; Wang Y
    Sci Total Environ; 2022 Sep; 839():156277. PubMed ID: 35643138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.