These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32035386)

  • 1. Application of artificial neural network and multiple linear regression in modeling nutrient recovery in vermicompost under different conditions.
    Hosseinzadeh A; Baziar M; Alidadi H; Zhou JL; Altaee A; Najafpoor AA; Jafarpour S
    Bioresour Technol; 2020 May; 303():122926. PubMed ID: 32035386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the nutrient content in dairy manure using artificial neural network modeling.
    Chen LJ; Cui LY; Xing L; Han LJ
    J Dairy Sci; 2008 Dec; 91(12):4822-9. PubMed ID: 19038957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative determination of nutrient content in poultry manure by near infrared spectroscopy based on artificial neural networks.
    Chen LJ; Xing L; Han LJ
    Poult Sci; 2009 Dec; 88(12):2496-503. PubMed ID: 19903946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response surface methodology and artificial neural network modelling for enhancing maturity parameters during vermicomposting of floral waste.
    Sharma D; Pandey AK; Yadav KD; Kumar S
    Bioresour Technol; 2021 Mar; 324():124672. PubMed ID: 33445008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and comparative analysis of ANN and SVR-based models with conventional regression models for predicting spray drift.
    Moges G; McDonnell K; Delele MA; Ali AN; Fanta SW
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):21927-21944. PubMed ID: 36280637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of statistical regression and artificial neural network models for estimating nitrogen, phosphorus, COD, and suspended solid concentrations in eutrophic rivers using UV-Vis spectroscopy.
    Lyu Y; Zhao W; Kinouchi T; Nagano T; Tanaka S
    Environ Monit Assess; 2023 Aug; 195(9):1114. PubMed ID: 37648802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran.
    Azadi S; Karimi-Jashni A
    Waste Manag; 2016 Feb; 48():14-23. PubMed ID: 26482809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Waste-to-energy as a tool of circular economy: Prediction of higher heating value of biomass by artificial neural network (ANN) and multivariate linear regression (MLR).
    Ezzahra Yatim F; Boumanchar I; Srhir B; Chhiti Y; Jama C; Ezzahrae M'hamdi Alaoui F
    Waste Manag; 2022 Nov; 153():293-303. PubMed ID: 36174430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting blood β-hydroxybutyrate using milk Fourier transform infrared spectrum, milk composition, and producer-reported variables with multiple linear regression, partial least squares regression, and artificial neural network.
    Pralle RS; Weigel KW; White HM
    J Dairy Sci; 2018 May; 101(5):4378-4387. PubMed ID: 29477523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of artificial neural networks with other statistical approaches for the prediction of true metabolizable energy of meat and bone meal.
    Perai AH; Nassiri Moghaddam H; Asadpour S; Bahrampour J; Mansoori G
    Poult Sci; 2010 Jul; 89(7):1562-8. PubMed ID: 20548088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring rice nitrogen status using hyperspectral reflectance and artificial neural network.
    Yi QX; Huang JF; Wang FM; Wang XZ; Liu ZY
    Environ Sci Technol; 2007 Oct; 41(19):6770-5. PubMed ID: 17969693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using artificial neural networks to predict pH, ammonia, and volatile fatty acid concentrations in the rumen.
    Li MM; Sengupta S; Hanigan MD
    J Dairy Sci; 2019 Oct; 102(10):8850-8861. PubMed ID: 31378500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors.
    Heddam S; Kisi O
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16702-16724. PubMed ID: 28560629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the performance of multi-media filters using artificial neural networks.
    Hawari AH; Alnahhal W
    Water Sci Technol; 2016 Nov; 74(9):2225-2233. PubMed ID: 27842042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of artificial intelligence neural network modeling to predict the generation of domestic, commercial and construction wastes.
    Coskuner G; Jassim MS; Zontul M; Karateke S
    Waste Manag Res; 2021 Mar; 39(3):499-507. PubMed ID: 32586206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of artificial neural network and multiple linear regression in the optimization of formulation parameters of leuprolide acetate loaded liposomes.
    Arulsudar N; Subramanian N; Muthy RS
    J Pharm Pharm Sci; 2005 Aug; 8(2):243-58. PubMed ID: 16124936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Neural Network-Based Model for Predicting Saybolt Color of Petroleum Products.
    Salehuddin NF; Omar MB; Ibrahim R; Bingi K
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capability assessment of conventional and data-driven models for prediction of suspended sediment load.
    Kumar A; Tripathi VK
    Environ Sci Pollut Res Int; 2022 Jul; 29(33):50040-50058. PubMed ID: 35226265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of artificial neural networks for predicting the physical composition of municipal solid waste: An assessment of the impact of seasonal variation.
    Adeleke O; Akinlabi SA; Jen TC; Dunmade I
    Waste Manag Res; 2021 Aug; 39(8):1058-1068. PubMed ID: 33596781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.