These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 32035394)
1. Microbiologically influenced corrosion of 304 stainless steel by nitrate reducing Bacillus cereus in simulated Beijing soil solution. Yu S; Lou Y; Zhang D; Zhou E; Li Z; Du C; Qian H; Xu D; Gu T Bioelectrochemistry; 2020 Jun; 133():107477. PubMed ID: 32035394 [TBL] [Abstract][Full Text] [Related]
2. Effect of alternating current and Bacillus cereus on the stress corrosion behavior and mechanism of X80 steel in a Beijing soil solution. Wan H; Song D; Du C; Liu Z; Li X Bioelectrochemistry; 2019 Jun; 127():49-58. PubMed ID: 30690423 [TBL] [Abstract][Full Text] [Related]
3. Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment. Wan H; Song D; Zhang D; Du C; Xu D; Liu Z; Ding D; Li X Bioelectrochemistry; 2018 Jun; 121():18-26. PubMed ID: 29329018 [TBL] [Abstract][Full Text] [Related]
4. Microbiologically influenced corrosion of X80 pipeline steel by nitrate reducing bacteria in artificial Beijing soil. Liu B; Li Z; Yang X; Du C; Li X Bioelectrochemistry; 2020 Oct; 135():107551. PubMed ID: 32470907 [TBL] [Abstract][Full Text] [Related]
5. Study of biofilm-influenced corrosion on X80 pipeline steel by a nitrate-reducing bacterium, Bacillus cereus, in artificial Beijing soil. Liu B; Sun M; Lu F; Du C; Li X Colloids Surf B Biointerfaces; 2021 Jan; 197():111356. PubMed ID: 33007505 [TBL] [Abstract][Full Text] [Related]
6. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm. Xu D; Xia J; Zhou E; Zhang D; Li H; Yang C; Li Q; Lin H; Li X; Yang K Bioelectrochemistry; 2017 Feb; 113():1-8. PubMed ID: 27578208 [TBL] [Abstract][Full Text] [Related]
7. Extracellular electron transfer of Bacillus cereus biofilm and its effect on the corrosion behaviour of 316L stainless steel. Li S; Li L; Qu Q; Kang Y; Zhu B; Yu D; Huang R Colloids Surf B Biointerfaces; 2019 Jan; 173():139-147. PubMed ID: 30278362 [TBL] [Abstract][Full Text] [Related]
8. Investigation of microbiologically influenced corrosion of 304 stainless steel by aerobic thermoacidophilic archaeon Metallosphaera cuprina. Qian H; Liu S; Wang P; Huang Y; Lou Y; Huang L; Jiang C; Zhang D Bioelectrochemistry; 2020 Dec; 136():107635. PubMed ID: 32866835 [TBL] [Abstract][Full Text] [Related]
9. Corrosion behavior of X80 pipeline steel in the presence of Brevibacterium halotolerans in Beijing soil. Li Z; Wan H; Song D; Liu X; Li Z; Du C Bioelectrochemistry; 2019 Apr; 126():121-129. PubMed ID: 30579249 [TBL] [Abstract][Full Text] [Related]
10. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm. Li H; Zhou E; Zhang D; Xu D; Xia J; Yang C; Feng H; Jiang Z; Li X; Gu T; Yang K Sci Rep; 2016 Feb; 6():20190. PubMed ID: 26846970 [TBL] [Abstract][Full Text] [Related]
11. Investigation of microbiologically influenced corrosion inhibition of 304 stainless steel by D-cysteine in the presence of Pseudomonas aeruginosa. Qian HC; Chang WW; Liu WL; Cui TY; Li Z; Guo DW; Kwok CT; Tam LM; Zhang DW Bioelectrochemistry; 2022 Feb; 143():107953. PubMed ID: 34583211 [TBL] [Abstract][Full Text] [Related]
12. Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. Dong Y; Jiang B; Xu D; Jiang C; Li Q; Gu T Bioelectrochemistry; 2018 Oct; 123():34-44. PubMed ID: 29723805 [TBL] [Abstract][Full Text] [Related]
13. Accelerating effect of pyocyanin on microbiologically influenced corrosion of 304 stainless steel by the Pseudomonas aeruginosa biofilm. Li Z; Huang L; Hao W; Yang J; Qian H; Zhang D Bioelectrochemistry; 2022 Aug; 146():108130. PubMed ID: 35397438 [TBL] [Abstract][Full Text] [Related]
14. Biologically competitive effect of Desulfovibrio desulfurican and Pseudomonas stutzeri on corrosion of X80 pipeline steel in the Shenyang soil solution. Fu Q; Xu J; Wei B; Qin Q; Bai Y; Yu C; Sun C Bioelectrochemistry; 2022 Jun; 145():108051. PubMed ID: 35065376 [TBL] [Abstract][Full Text] [Related]
15. Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. Nan L; Xu D; Gu T; Song X; Yang K Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():228-34. PubMed ID: 25579918 [TBL] [Abstract][Full Text] [Related]
16. Effect of B. subtilis in simulated acid red soil on the corrosion behavior of X80 pipeline steel. Duan T; Wu ZX; Wang D; Du CW; Li XG; Shen Q Bioelectrochemistry; 2024 Jun; 157():108640. PubMed ID: 38244430 [TBL] [Abstract][Full Text] [Related]
17. Anaerobic Corrosion of 304 Stainless Steel Caused by the Jia R; Yang D; Xu D; Gu T Front Microbiol; 2017; 8():2335. PubMed ID: 29230206 [No Abstract] [Full Text] [Related]
18. Uniform and Pitting Corrosion of Carbon Steel by Shewanella oneidensis MR-1 under Nitrate-Reducing Conditions. Miller RB; Lawson K; Sadek A; Monty CN; Senko JM Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654179 [TBL] [Abstract][Full Text] [Related]
19. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm. Jia R; Yang D; Xu D; Gu T Bioelectrochemistry; 2017 Dec; 118():38-46. PubMed ID: 28715664 [TBL] [Abstract][Full Text] [Related]
20. Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm. Lekbach Y; Li Z; Xu D; El Abed S; Dong Y; Liu D; Gu T; Koraichi SI; Yang K; Wang F Bioelectrochemistry; 2019 Aug; 128():193-203. PubMed ID: 31004913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]