These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32035435)

  • 1. Anti-crossing property of strong coupling system of silver nanoparticle dimers coated with thin dye molecular films analyzed by electromagnetism.
    Itoh T; Yamamoto YS; Okamoto T
    J Chem Phys; 2020 Feb; 152(5):054710. PubMed ID: 32035435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single vs double anti-crossing in the strong coupling between surface plasmons and molecular excitons.
    Tan WJ; Thomas PA; Luxmoore IJ; Barnes WL
    J Chem Phys; 2021 Jan; 154(2):024704. PubMed ID: 33445885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproduction of surface-enhanced resonant Raman scattering and fluorescence spectra of a strong coupling system composed of a single silver nanoparticle dimer and a few dye molecules.
    Itoh T; Yamamoto YS
    J Chem Phys; 2018 Dec; 149(24):244701. PubMed ID: 30599753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays.
    Liu J; Wang W; Wang D; Hu J; Ding W; Schaller RD; Schatz GC; Odom TW
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):5925-5930. PubMed ID: 30850522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlated Polarization Dependences between Surface-Enhanced Resonant Raman Scattering and Plasmon Resonance Elastic Scattering Showing Spectral Uncorrelation to Each Other.
    Itoh T; Yamamoto YS
    J Phys Chem B; 2023 May; 127(20):4666-4675. PubMed ID: 37192137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong Coupling between ZnO Excitons and Localized Surface Plasmons of Silver Nanoparticles Studied by STEM-EELS.
    Wei J; Jiang N; Xu J; Bai X; Liu J
    Nano Lett; 2015 Sep; 15(9):5926-31. PubMed ID: 26237659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps.
    Nagasawa F; Takase M; Murakoshi K
    J Phys Chem Lett; 2014 Jan; 5(1):14-9. PubMed ID: 26276174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of electromagnetic enhancement correlated to optical absorption of single plasmonic system coupled with molecular excitons using ultrafast surface-enhanced fluorescence.
    Itoh T; Yamamoto YS
    J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37466231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon coupled metal enhanced spectral and charge transport properties of poly(3,3'''-dialkylquarterthiophene) Langmuir Schaefer films.
    Pandey RK; Yadav SK; Upadhyay C; Prakash R; Mishra H
    Nanoscale; 2015 Apr; 7(14):6083-92. PubMed ID: 25767916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles.
    Zhao J; Jensen L; Sung J; Zou S; Schatz GC; Duyne RP
    J Am Chem Soc; 2007 Jun; 129(24):7647-56. PubMed ID: 17521187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer.
    Sheikholeslami S; Jun YW; Jain PK; Alivisatos AP
    Nano Lett; 2010 Jul; 10(7):2655-60. PubMed ID: 20536212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling.
    Pellarin M; Ramade J; Rye JM; Bonnet C; Broyer M; Lebeault MA; Lermé J; Marguet S; Navarro JR; Cottancin E
    ACS Nano; 2016 Dec; 10(12):11266-11279. PubMed ID: 28024347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory of strong coupling between molecules and surface plasmons on a grating.
    Rider MS; Arul R; Baumberg JJ; Barnes WL
    Nanophotonics; 2022 Sep; 11(16):3695-3708. PubMed ID: 36061948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice.
    Liu W; Lee B; Naylor CH; Ee HS; Park J; Johnson AT; Agarwal R
    Nano Lett; 2016 Feb; 16(2):1262-9. PubMed ID: 26784532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon resonance energy transfer and plexcitonic solar cell.
    Nan F; Ding SJ; Ma L; Cheng ZQ; Zhong YT; Zhang YF; Qiu YH; Li X; Zhou L; Wang QQ
    Nanoscale; 2016 Aug; 8(32):15071-8. PubMed ID: 27481652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong coupling between few molecular excitons and Fano-like cavity plasmon in two-layered dielectric-metal core-shell resonators.
    Wu W; Wan M; Gu P; Chen Z; Wang Z
    Opt Express; 2017 Jan; 25(2):1495-1504. PubMed ID: 28158030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable strong exciton-plasmon-exciton coupling in WS
    Jiang P; Song G; Wang Y; Li C; Wang L; Yu L
    Opt Express; 2019 Jun; 27(12):16613-16623. PubMed ID: 31252885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large Rabi splitting of mixed plasmon-exciton states in small plasmonic moiré cavities.
    Ates S; Karademir E; Balci S; Kocabas C; Aydinli A
    Opt Lett; 2020 Oct; 45(20):5824-5827. PubMed ID: 33057294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum transport through a Coulomb blockaded quantum emitter coupled to a plasmonic dimer.
    Goker A; Aksu H
    Phys Chem Chem Phys; 2016 Jan; 18(3):1980-91. PubMed ID: 26686761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic enhancement of fluorescence on silver nanoparticle films.
    Xu S; Cao Y; Zhou J; Wang X; Wang X; Xu W
    Nanotechnology; 2011 Jul; 22(27):275715. PubMed ID: 21613682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.