These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32035935)

  • 1. Computational modelling and optimal control of measles epidemic in human population.
    Berhe HW; Makinde OD
    Biosystems; 2020 Apr; 190():104102. PubMed ID: 32035935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The measles epidemic model assessment under real statistics: an application of stochastic optimal control theory.
    Liu P; Ikram R; Khan A; Din A
    Comput Methods Biomech Biomed Engin; 2023 Feb; 26(2):138-159. PubMed ID: 35297714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global dynamics of a discrete age-structured SIR epidemic model with applications to measles vaccination strategies.
    Zhou L; Wang Y; Xiao Y; Li MY
    Math Biosci; 2019 Feb; 308():27-37. PubMed ID: 30529600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal transmission dynamics of measles in China.
    Huang J; Ruan S; Wu X; Zhou X
    Theory Biosci; 2018 Nov; 137(2):185-195. PubMed ID: 30259352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saturated treatments and measles resurgence episodes in South Africa: a possible linkage.
    Lacitignola D
    Math Biosci Eng; 2013 Aug; 10(4):1135-57. PubMed ID: 23906205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Markovian switching for near-optimal control of a stochastic SIV epidemic model.
    Wang Z; Zhang QM; Li XN
    Math Biosci Eng; 2019 Feb; 16(3):1348-1375. PubMed ID: 30947424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the dynamics of direct and pathogens-induced dysentery diarrhoea epidemic with controls.
    Berhe HW; Makinde OD; Theuri DM
    J Biol Dyn; 2019 Dec; 13(1):192-217. PubMed ID: 30843764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling and Optimal Control of Typhoid Fever Disease with Cost-Effective Strategies.
    Tilahun GT; Makinde OD; Malonza D
    Comput Math Methods Med; 2017; 2017():2324518. PubMed ID: 29081828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulse vaccination strategy in the SIR epidemic model.
    Shulgin B; Stone L; Agur Z
    Bull Math Biol; 1998 Nov; 60(6):1123-48. PubMed ID: 9866452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatio-temporal numerical modeling of reaction-diffusion measles epidemic system.
    Ahmed N; Wei Z; Baleanu D; Rafiq M; Rehman MA
    Chaos; 2019 Oct; 29(10):103101. PubMed ID: 31675795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating enhanced prevaccination measles transmission hotspots in the context of cross-scale dynamics.
    Becker AD; Birger RB; Teillant A; Gastanaduy PA; Wallace GS; Grenfell BT
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14595-14600. PubMed ID: 27872300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vaccination Control in a Stochastic SVIR Epidemic Model.
    Witbooi PJ; Muller GE; Van Schalkwyk GJ
    Comput Math Methods Med; 2015; 2015():271654. PubMed ID: 26089961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact on Epidemic Measles of Vaccination Campaigns Triggered by Disease Outbreaks or Serosurveys: A Modeling Study.
    Lessler J; Metcalf CJ; Cutts FT; Grenfell BT
    PLoS Med; 2016 Oct; 13(10):e1002144. PubMed ID: 27727285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical investigation of an "SVEIR" epidemic model for the measles transmission.
    Hajji ME; Albargi AH
    Math Biosci Eng; 2022 Jan; 19(3):2853-2875. PubMed ID: 35240810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability analysis and optimal control of an SIR epidemic model with vaccination.
    Kar TK; Batabyal A
    Biosystems; 2011; 104(2-3):127-35. PubMed ID: 21315798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling vaccination programmes against measles in Taiwan.
    Chen SC; Chang CF; Jou LJ; Liao CM
    Epidemiol Infect; 2007 Jul; 135(5):775-86. PubMed ID: 17064459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California.
    Liu F; Enanoria WT; Zipprich J; Blumberg S; Harriman K; Ackley SF; Wheaton WD; Allpress JL; Porco TC
    BMC Public Health; 2015 May; 15():447. PubMed ID: 25928152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SIRC epidemic model with cross-immunity and multiple time delays.
    Goel S; Bhatia SK; Tripathi JP; Bugalia S; Rana M; Bajiya VP
    J Math Biol; 2023 Aug; 87(3):42. PubMed ID: 37573266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards eradication of measles virus: global progress and strategy evaluation.
    Nokes DJ; Williams JR; Butler AR
    Vet Microbiol; 1995 May; 44(2-4):333-50. PubMed ID: 8588328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring Infection Transmission in a Stochastic SIV Model with Infection Reintroduction and Imperfect Vaccine.
    Gamboa M; Lopez-Herrero MJ
    Acta Biotheor; 2020 Dec; 68(4):395-420. PubMed ID: 31916048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.