These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32036112)

  • 1. Foam stability in filtered lubricants containing antifoams.
    Chandran Suja V; Kar A; Cates W; Remmert SM; Fuller GG
    J Colloid Interface Sci; 2020 May; 567():1-9. PubMed ID: 32036112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifoams in non-aqueous diesel fuels: Thin liquid film dynamics and antifoam mechanisms.
    Calhoun SGK; Chandran Suja V; Fowler R; Agiral A; Salem K; Fuller GG
    J Colloid Interface Sci; 2024 Dec; 675():1059-1068. PubMed ID: 39013302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foams and antifoams.
    Karakashev SI; Grozdanova MV
    Adv Colloid Interface Sci; 2012; 176-177():1-17. PubMed ID: 22560722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of foam destruction by oil-based antifoams.
    Denkov ND
    Langmuir; 2004 Oct; 20(22):9463-505. PubMed ID: 15491178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaporation-induced foam stabilization in lubricating oils.
    Chandran Suja V; Kar A; Cates W; Remmert SM; Savage PD; Fuller GG
    Proc Natl Acad Sci U S A; 2018 Jul; 115(31):7919-7924. PubMed ID: 30012609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foaming and cell flotation in suspended plant cell cultures and the effect of chemical antifoams.
    Wongsamuth R; Doran PM
    Biotechnol Bioeng; 1994 Aug; 44(4):481-8. PubMed ID: 18618782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of bubble coalescence induced by surfactant covered antifoam particles.
    Joshi KS; Baumann A; Jeelani SA; Blickenstorfer C; Naegeli I; Windhab EJ
    J Colloid Interface Sci; 2009 Nov; 339(2):446-53. PubMed ID: 19726048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of new defoamer agents and characterization of cementitious formulations.
    Taddeo F; Vitiello R; Ruocco M; Turco R; Russo V; Tesser R; Di Serio M
    Heliyon; 2024 Jun; 10(12):e33164. PubMed ID: 39021906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Observation of Foam Film Rupture by Several Types of Antifoams Using a Scanning Laser Microscope.
    Tamura T; Kageyama M; Kaneko Y; Kishino T; Nikaido M
    J Colloid Interface Sci; 1999 May; 213(1):179-186. PubMed ID: 10191020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foam and its mitigation in fermentation systems.
    Junker B
    Biotechnol Prog; 2007; 23(4):767-84. PubMed ID: 17567037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foam formation and mitigation in a three-phase gas-liquid-particulate system.
    Vijayaraghavan K; Nikolov A; Wasan D
    Adv Colloid Interface Sci; 2006 Nov; 123-126():49-61. PubMed ID: 16997269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Air Bubble Inclusion on Polyurethane Reaction Kinetics.
    Brondi C; Santiago-Calvo M; Di Maio E; Rodríguez-Perez MÁ
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Eco-Friendly Drilling Additives on Foaming Properties for Sustainable Underbalanced Foam Drilling Applications.
    Gowida A; Elkatatny S; Ibrahim AF
    ACS Omega; 2024 Feb; 9(6):6719-6730. PubMed ID: 38371819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benefits of polidocanol endovenous microfoam (Varithena®) compared with physician-compounded foams.
    Carugo D; Ankrett DN; Zhao X; Zhang X; Hill M; O'Byrne V; Hoad J; Arif M; Wright DD; Lewis AL
    Phlebology; 2016 May; 31(4):283-95. PubMed ID: 26036246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single bubble and drop techniques for characterizing foams and emulsions.
    Chandran Suja V; Rodríguez-Hakim M; Tajuelo J; Fuller GG
    Adv Colloid Interface Sci; 2020 Dec; 286():102295. PubMed ID: 33161297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How antifoams act: a microgravity study.
    Yazhgur P; Langevin D; Caps H; Klein V; Rio E; Salonen A
    NPJ Microgravity; 2015; 1():15004. PubMed ID: 28725710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coalescence In Draining Foams Made of Very Small Bubbles.
    Briceño-Ahumada Z; Drenckhan W; Langevin D
    Phys Rev Lett; 2016 Mar; 116(12):128302. PubMed ID: 27058106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foaming of Oils: Effect of Poly(dimethylsiloxanes) and Silica Nanoparticles.
    Chen J; Huang X; He L; Luo X
    ACS Omega; 2019 Apr; 4(4):6502-6510. PubMed ID: 31459782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drainage and Coalescence in Standing Foams.
    Bhakta A; Ruckenstein E
    J Colloid Interface Sci; 1997 Jul; 191(1):184-201. PubMed ID: 9241219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of new mineral oil-based antifoams containing size-controlled hydrophobic silica particles for gloss paints.
    Jo K; Ishizuka M; Shimabayashi K; Ando T
    J Oleo Sci; 2014; 63(12):1303-8. PubMed ID: 25452267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.