These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 32036205)
1. Influence on the user's emotional state of the graphic complexity level in virtual therapies based on a robot-assisted neuro-rehabilitation platform. Villar BF; Viñas PF; Turiel JP; Carlos Fraile Marinero J; Gordaliza A Comput Methods Programs Biomed; 2020 Jul; 190():105359. PubMed ID: 32036205 [TBL] [Abstract][Full Text] [Related]
2. A genetic algorithm-based method to modulate the difficulty of serious games along consecutive robot-assisted therapy sessions. Martinez-Pascual D; Catalán JM; Lledó LD; Blanco-Ivorra A; Vales Y; Garcia-Aracil N Comput Biol Med; 2024 Oct; 181():109033. PubMed ID: 39205341 [TBL] [Abstract][Full Text] [Related]
3. Effects of robotic neurorehabilitation through lokomat plus virtual reality on cognitive function in patients with traumatic brain injury: A retrospective case-control study. Maggio MG; Torrisi M; Buda A; De Luca R; Piazzitta D; Cannavò A; Leo A; Milardi D; Manuli A; Calabro RS Int J Neurosci; 2020 Feb; 130(2):117-123. PubMed ID: 31590592 [No Abstract] [Full Text] [Related]
4. Virtual Reality and Serious Games in Neurorehabilitation of Children and Adults: Prevention, Plasticity, and Participation. Deutsch JE; Westcott McCoy S Pediatr Phys Ther; 2017 Jul; 29 Suppl 3(Suppl 3 IV STEP 2016 CONFERENCE PROCEEDINGS):S23-S36. PubMed ID: 28654475 [TBL] [Abstract][Full Text] [Related]
5. Restoring movement representation and alleviating phantom limb pain through short-term neurorehabilitation with a virtual reality system. Osumi M; Ichinose A; Sumitani M; Wake N; Sano Y; Yozu A; Kumagaya S; Kuniyoshi Y; Morioka S Eur J Pain; 2017 Jan; 21(1):140-147. PubMed ID: 27378656 [TBL] [Abstract][Full Text] [Related]
6. Supervised and dynamic neuro-fuzzy systems to classify physiological responses in robot-assisted neurorehabilitation. Lledó LD; Badesa FJ; Almonacid M; Cano-Izquierdo JM; Sabater-Navarro JM; Fernández E; Garcia-Aracil N PLoS One; 2015; 10(5):e0127777. PubMed ID: 26001214 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Visual Stimuli for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces in Virtual Reality Environment in terms of Classification Accuracy and Visual Comfort. Choi KM; Park S; Im CH Comput Intell Neurosci; 2019; 2019():9680697. PubMed ID: 31354804 [TBL] [Abstract][Full Text] [Related]
8. Improving motor performance in Parkinson's disease: a preliminary study on the promising use of the computer assisted virtual reality environment (CAREN). Calabrò RS; Naro A; Cimino V; Buda A; Paladina G; Di Lorenzo G; Manuli A; Milardi D; Bramanti P; Bramanti A Neurol Sci; 2020 Apr; 41(4):933-941. PubMed ID: 31858331 [TBL] [Abstract][Full Text] [Related]
9. Brain-computer interfaces and virtual reality for neurorehabilitation. Leeb R; Pérez-Marcos D Handb Clin Neurol; 2020; 168():183-197. PubMed ID: 32164852 [TBL] [Abstract][Full Text] [Related]
10. A Virtual Reality Muscle-Computer Interface for Neurorehabilitation in Chronic Stroke: A Pilot Study. Marin-Pardo O; Laine CM; Rennie M; Ito KL; Finley J; Liew SL Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635550 [TBL] [Abstract][Full Text] [Related]
11. A comparison of the psychological effects of robot motion in physical and virtual environments. Sanders NE; Xie Z; Chen KB Appl Ergon; 2023 Oct; 112():104039. PubMed ID: 37320910 [TBL] [Abstract][Full Text] [Related]
12. Haptic Neurorehabilitation and Virtual Reality for Upper Limb Paralysis: A Review. Piggott L; Wagner S; Ziat M Crit Rev Biomed Eng; 2016; 44(1-2):1-32. PubMed ID: 27652449 [TBL] [Abstract][Full Text] [Related]
13. Performance-driven facial animation: basic research on human judgments of emotional state in facial avatars. Rizzo AA; Neumann U; Enciso R; Fidaleo D; Noh JY Cyberpsychol Behav; 2001 Aug; 4(4):471-87. PubMed ID: 11708727 [TBL] [Abstract][Full Text] [Related]
14. Getting into a "Flow" state: a systematic review of flow experience in neurological diseases. Ottiger B; Van Wegen E; Keller K; Nef T; Nyffeler T; Kwakkel G; Vanbellingen T J Neuroeng Rehabil; 2021 Apr; 18(1):65. PubMed ID: 33879182 [TBL] [Abstract][Full Text] [Related]
15. Trends in robot-assisted and virtual reality-assisted neuromuscular therapy: a systematic review of health-related multiplayer games. Baur K; Schättin A; de Bruin ED; Riener R; Duarte JE; Wolf P J Neuroeng Rehabil; 2018 Nov; 15(1):107. PubMed ID: 30454009 [TBL] [Abstract][Full Text] [Related]
16. Modelling Ecological Cognitive Rehabilitation Therapies for Building Virtual Environments in Brain Injury. Martínez-Moreno JM; Sánchez-González P; Luna M; Roig T; Tormos JM; Gómez EJ Methods Inf Med; 2016; 55(1):50-9. PubMed ID: 26391897 [TBL] [Abstract][Full Text] [Related]
17. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. Tieri G; Morone G; Paolucci S; Iosa M Expert Rev Med Devices; 2018 Feb; 15(2):107-117. PubMed ID: 29313388 [TBL] [Abstract][Full Text] [Related]
18. A learning-based agent for home neurorehabilitation. Lydakis A; Meng Y; Munroe C; Wu YN; Begum M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1233-1238. PubMed ID: 28813990 [TBL] [Abstract][Full Text] [Related]
19. Exoskeletons With Virtual Reality, Augmented Reality, and Gamification for Stroke Patients' Rehabilitation: Systematic Review. Mubin O; Alnajjar F; Jishtu N; Alsinglawi B; Al Mahmud A JMIR Rehabil Assist Technol; 2019 Sep; 6(2):e12010. PubMed ID: 31586360 [TBL] [Abstract][Full Text] [Related]
20. Hiding Assistive Robots During Training in Immersive VR Does Not Affect Users' Motivation, Presence, Embodiment, Performance, Nor Visual Attention. Wenk N; Jordi MV; Buetler KA; Marchal-Crespo L IEEE Trans Neural Syst Rehabil Eng; 2022; 30():390-399. PubMed ID: 35085087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]