These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 32036301)

  • 1. A novel hydrogel-based treatment for complete transection spinal cord injury repair is driven by microglia/macrophages repopulation.
    Ma D; Zhao Y; Huang L; Xiao Z; Chen B; Shi Y; Shen H; Dai J
    Biomaterials; 2020 Apr; 237():119830. PubMed ID: 32036301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of the Fractalkine Receptor, CX3CR1, Improves Endogenous Repair, Axon Sprouting, and Synaptogenesis after Spinal Cord Injury in Mice.
    Freria CM; Hall JC; Wei P; Guan Z; McTigue DM; Popovich PG
    J Neurosci; 2017 Mar; 37(13):3568-3587. PubMed ID: 28264978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury.
    Shen H; Xu B; Yang C; Xue W; You Z; Wu X; Ma D; Shao D; Leong K; Dai J
    Biomaterials; 2022 Jan; 280():121279. PubMed ID: 34847433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.
    Gaudet AD; Mandrekar-Colucci S; Hall JC; Sweet DR; Schmitt PJ; Xu X; Guan Z; Mo X; Guerau-de-Arellano M; Popovich PG
    J Neurosci; 2016 Aug; 36(32):8516-32. PubMed ID: 27511021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Newly Formed Endothelial Cells Regulate Myeloid Cell Activity Following Spinal Cord Injury via Expression of CD200 Ligand.
    Cohen M; Ben-Yehuda H; Porat Z; Raposo C; Gordon S; Schwartz M
    J Neurosci; 2017 Jan; 37(4):972-985. PubMed ID: 28123029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal differentiation and inhibition of glial differentiation of murine neural stem cells by pHPMA hydrogel for the repair of injured spinal cord.
    Rybachuk O; Nesterenko Y; Pinet É; Medvediev V; Yaminsky Y; Tsymbaliuk V
    Exp Neurol; 2023 Oct; 368():114497. PubMed ID: 37517459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adhesive, Stretchable, and Spatiotemporal Delivery Fibrous Hydrogels Harness Endogenous Neural Stem/Progenitor Cells for Spinal Cord Injury Repair.
    Chen Z; Zhang H; Fan C; Zhuang Y; Yang W; Chen Y; Shen H; Xiao Z; Zhao Y; Li X; Dai J
    ACS Nano; 2022 Feb; 16(2):1986-1998. PubMed ID: 34842412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directing Induced Pluripotent Stem Cell Derived Neural Stem Cell Fate with a Three-Dimensional Biomimetic Hydrogel for Spinal Cord Injury Repair.
    Fan L; Liu C; Chen X; Zou Y; Zhou Z; Lin C; Tan G; Zhou L; Ning C; Wang Q
    ACS Appl Mater Interfaces; 2018 May; 10(21):17742-17755. PubMed ID: 29733569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transplantation of Heat-Shock Preconditioned Neural Stem/Progenitor Cells Combined with RGD-Functionalised Hydrogel Promotes Spinal Cord Functional Recovery in a Rat Hemi-Transection Model.
    Kim WK; Kang BJ
    Stem Cell Rev Rep; 2024 Jan; 20(1):283-300. PubMed ID: 37821771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extremely low frequency magnetic field protects injured spinal cord from the microglia- and iron-induced tissue damage.
    Dey S; Bose S; Kumar S; Rathore R; Mathur R; Jain S
    Electromagn Biol Med; 2017; 36(4):330-340. PubMed ID: 29140736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective nanovector mediated treatment of activated proinflammatory microglia/macrophages in spinal cord injury.
    Papa S; Rossi F; Ferrari R; Mariani A; De Paola M; Caron I; Fiordaliso F; Bisighini C; Sammali E; Colombo C; Gobbi M; Canovi M; Lucchetti J; Peviani M; Morbidelli M; Forloni G; Perale G; Moscatelli D; Veglianese P
    ACS Nano; 2013 Nov; 7(11):9881-95. PubMed ID: 24138479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment.
    Watanabe S; Uchida K; Nakajima H; Matsuo H; Sugita D; Yoshida A; Honjoh K; Johnson WE; Baba H
    Stem Cells; 2015 Jun; 33(6):1902-14. PubMed ID: 25809552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rescuing macrophage normal function in spinal cord injury with embryonic stem cell conditioned media.
    Guo L; Rolfe AJ; Wang X; Tai W; Cheng Z; Cao K; Chen X; Xu Y; Sun D; Li J; He X; Young W; Fan J; Ren Y
    Mol Brain; 2016 May; 9(1):48. PubMed ID: 27153974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Agonist of the Protective Factor SIRT1 Improves Functional Recovery and Promotes Neuronal Survival by Attenuating Inflammation after Spinal Cord Injury.
    Chen H; Ji H; Zhang M; Liu Z; Lao L; Deng C; Chen J; Zhong G
    J Neurosci; 2017 Mar; 37(11):2916-2930. PubMed ID: 28193684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aligned collagen scaffold combination with human spinal cord-derived neural stem cells to improve spinal cord injury repair.
    Zou Y; Ma D; Shen H; Zhao Y; Xu B; Fan Y; Sun Z; Chen B; Xue W; Shi Y; Xiao Z; Gu R; Dai J
    Biomater Sci; 2020 Sep; 8(18):5145-5156. PubMed ID: 32832944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective killing of spinal cord neural stem cells impairs locomotor recovery in a mouse model of spinal cord injury.
    Cusimano M; Brambilla E; Capotondo A; De Feo D; Tomasso A; Comi G; D'Adamo P; Muzio L; Martino G
    J Neuroinflammation; 2018 Feb; 15(1):58. PubMed ID: 29475438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small molecules combined with collagen hydrogel direct neurogenesis and migration of neural stem cells after spinal cord injury.
    Yang Y; Fan Y; Zhang H; Zhang Q; Zhao Y; Xiao Z; Liu W; Chen B; Gao L; Sun Z; Xue X; Shu M; Dai J
    Biomaterials; 2021 Feb; 269():120479. PubMed ID: 33223332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of adhesive and bioactive silk fibroin hydrogel for treatment of spinal cord injury.
    Liu Y; Zhang Z; Zhang Y; Luo B; Liu X; Cao Y; Pei R
    Acta Biomater; 2023 Mar; 158():178-189. PubMed ID: 36584800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aldose Reductase Regulates Microglia/Macrophages Polarization Through the cAMP Response Element-Binding Protein After Spinal Cord Injury in Mice.
    Zhang Q; Bian G; Chen P; Liu L; Yu C; Liu F; Xue Q; Chung SK; Song B; Ju G; Wang J
    Mol Neurobiol; 2016 Jan; 53(1):662-676. PubMed ID: 25520004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depletion of microglia exacerbates injury and impairs function recovery after spinal cord injury in mice.
    Fu H; Zhao Y; Hu D; Wang S; Yu T; Zhang L
    Cell Death Dis; 2020 Jul; 11(7):528. PubMed ID: 32661227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.