These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32036326)

  • 1. Techno-economic evaluation of a biorefinery applying food waste for sophorolipid production - A case study for Hong Kong.
    Wang H; Tsang CW; To MH; Kaur G; Roelants SLKW; Stevens CV; Soetaert W; Lin CSK
    Bioresour Technol; 2020 May; 303():122852. PubMed ID: 32036326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioconversion of Food Waste to produce Industrial-scale Sophorolipid Syrup and Crystals: dynamic Life Cycle Assessment (dLCA) of Emerging Biotechnologies.
    Hu X; Subramanian K; Wang H; Roelants SLKW; Soetaert W; Kaur G; Lin CSK; Chopra SS
    Bioresour Technol; 2021 Oct; 337():125474. PubMed ID: 34320754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valorisation of food waste for valuable by-products generation with economic assessment.
    Zheng X; Chen X; Qu A; Yang W; Tao L; Li F; Huang J; Xu X; Tang J; Hou P; Han W
    J Environ Manage; 2023 Jul; 338():117762. PubMed ID: 37003224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process design and techno-economic analysis of fuel ethanol production from food waste by enzymatic hydrolysis and fermentation.
    Chen X; Zheng X; Pei Y; Chen W; Lin Q; Huang J; Hou P; Tang J; Han W
    Bioresour Technol; 2022 Nov; 363():127882. PubMed ID: 36067898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Techno-economic analysis of a food waste valorization process via microalgae cultivation and co-production of plasticizer, lactic acid and animal feed from algal biomass and food waste.
    Kwan TH; Pleissner D; Lau KY; Venus J; Pommeret A; Lin CS
    Bioresour Technol; 2015 Dec; 198():292-9. PubMed ID: 26402872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced sophorolipid production and effective conversion of waste frying oil using dual lipophilic substrates.
    Hirata Y; Igarashi K; Ueda A; Quan GL
    Biosci Biotechnol Biochem; 2021 Jun; 85(7):1763-1771. PubMed ID: 33979431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of commercial waste biorefineries for cassava starch industries: Techno-economic assessment.
    Padi RK; Chimphango A
    Bioresour Technol; 2020 Feb; 297():122461. PubMed ID: 31787518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated polylactic acid and biodiesel production from food waste: Process synthesis and economics.
    Rajendran N; Han J
    Bioresour Technol; 2022 Jan; 343():126119. PubMed ID: 34653627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Techno-economic analysis of food waste valorization for integrated production of polyhydroxyalkanoates and biofuels.
    Rajendran N; Han J
    Bioresour Technol; 2022 Mar; 348():126796. PubMed ID: 35121100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste.
    Han W; Fang J; Liu Z; Tang J
    Bioresour Technol; 2016 Feb; 202():107-12. PubMed ID: 26706723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment.
    Caldeira C; Vlysidis A; Fiore G; De Laurentiis V; Vignali G; Sala S
    Bioresour Technol; 2020 Sep; 312():123575. PubMed ID: 32521468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic Waste Governance under "One Country, Two Systems": Hong Kong and Mainland China.
    Wong NWM
    Int J Environ Res Public Health; 2018 Oct; 15(11):. PubMed ID: 30356001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biohydrogen production from waste bread in a continuous stirred tank reactor: A techno-economic analysis.
    Han W; Hu YY; Li SY; Li FF; Tang JH
    Bioresour Technol; 2016 Dec; 221():318-323. PubMed ID: 27648851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guiding environmental sustainability of emerging bioconversion technology for waste-derived sophorolipid production by adopting a dynamic life cycle assessment (dLCA) approach.
    Hu X; Subramanian K; Wang H; Roelants SLKW; To MH; Soetaert W; Kaur G; Lin CSK; Chopra SS
    Environ Pollut; 2021 Jan; 269():116101. PubMed ID: 33307395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Techno-economic analysis and life cycle assessment of poly (butylene succinate) production using food waste.
    Rajendran N; Han J
    Waste Manag; 2023 Feb; 156():168-176. PubMed ID: 36470012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Techno-economic evaluation of biodiesel production from waste cooking oil--a case study of Hong Kong.
    Karmee SK; Patria RD; Lin CS
    Int J Mol Sci; 2015 Feb; 16(3):4362-71. PubMed ID: 25809602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the available technologies and their feasibility for the conversion of food waste into fish feed in Hong Kong.
    Cheng JY; Lo IM
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7169-77. PubMed ID: 25982983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal preparation of food waste to increase its utility for sophorolipid production by Starmerella bombicola.
    To MH; Wang H; Miao Y; Kaur G; Roelants SLKW; Lin CSK
    Bioresour Technol; 2023 Jul; 379():128993. PubMed ID: 37011850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Techno-economic and profitability analysis of food waste biorefineries at European level.
    Cristóbal J; Caldeira C; Corrado S; Sala S
    Bioresour Technol; 2018 Jul; 259():244-252. PubMed ID: 29567596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life cycle assessment (LCA) of food waste treatment in Hong Kong: On-site fermentation methodology.
    Yeo J; Chopra SS; Zhang L; An AK
    J Environ Manage; 2019 Jun; 240():343-351. PubMed ID: 30953987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.