These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32036436)

  • 1. Implications of agar and agarase in industrial applications of sustainable marine biomass.
    Park SH; Lee CR; Hong SK
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):2815-2832. PubMed ID: 32036436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars.
    Yun EJ; Yu S; Kim KH
    Appl Microbiol Biotechnol; 2017 Jul; 101(14):5581-5589. PubMed ID: 28656380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel agarolytic β-galactosidase acts on agarooligosaccharides for complete hydrolysis of agarose into monomers.
    Lee CH; Kim HT; Yun EJ; Lee AR; Kim SR; Kim JH; Choi IG; Kim KH
    Appl Environ Microbiol; 2014 Oct; 80(19):5965-73. PubMed ID: 25038102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agar degradation by microorganisms and agar-degrading enzymes.
    Chi WJ; Chang YK; Hong SK
    Appl Microbiol Biotechnol; 2012 May; 94(4):917-30. PubMed ID: 22526785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different Levels of Skin Whitening Activity among 3,6-Anhydro-l-galactose, Agarooligosaccharides, and Neoagarooligosaccharides.
    Kim JH; Yun EJ; Yu S; Kim KH; Kang NJ
    Mar Drugs; 2017 Oct; 15(10):. PubMed ID: 29053566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Future direction in marine bacterial agarases for industrial applications.
    Jahromi ST; Barzkar N
    Appl Microbiol Biotechnol; 2018 Aug; 102(16):6847-6863. PubMed ID: 29909571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agarase cocktail from agar polysaccharide utilization loci converts homogenized Gelidium amansii into neoagarooligosaccharides.
    Song T; Wang X; Wu M; Zhao K; Wang X; Chu Y; Lin J
    Food Chem; 2021 Aug; 352():128685. PubMed ID: 33691998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusion of agarase and neoagarobiose hydrolase for mono-sugar production from agar.
    Alkotaini B; Han NS; Kim BS
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1573-1580. PubMed ID: 27888333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic preparation and potential applications of agar oligosaccharides: a review.
    Long J; Ye Z; Li X; Tian Y; Bai Y; Chen L; Qiu C; Xie Z; Jin Z; Svensson B
    Crit Rev Food Sci Nutr; 2024; 64(17):5818-5834. PubMed ID: 36547517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-Based Complete Enzymatic Production of 3,6-Anhydro-l-galactose from Red Algal Biomass.
    Pathiraja D; Lee S; Choi IG
    J Agric Food Chem; 2018 Jul; 66(26):6814-6821. PubMed ID: 29896965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of neoagarobiose from agar through a dual-enzyme and two-stage hydrolysis strategy.
    Yan J; Chen P; Zeng Y; Yang J; Men Y; Zhu Y; Sun Y
    Int J Biol Macromol; 2020 Oct; 160():288-295. PubMed ID: 32470583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual Agarolytic Pathways in a Marine Bacterium,
    Yu S; Yun EJ; Kim DH; Park SY; Kim KH
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924614
    [No Abstract]   [Full Text] [Related]  

  • 13. Isolation and Characterization of an Eosinophilic GH 16 β-Agarase (AgaDL6) from an Agar-Degrading Marine Bacterium
    Liu Y; Tian X; Peng C; Du Z
    J Microbiol Biotechnol; 2019 Feb; 29(2):235-243. PubMed ID: 30544285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical characterization of a novel cold-adapted GH39 β-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7.
    Jung S; Lee CR; Chi WJ; Bae CH; Hong SK
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1965-1974. PubMed ID: 27832307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of extracellular agarase from Priestia megaterium AT7 and evaluation on marine algae hydrolysis.
    Thanh Ha DT; Kim Thoa LT; Phuong Thao TT; Dung TT; Minh Ha TT; Phuong Lan TT; Khoo KS; Show PL; Huy ND
    Enzyme Microb Technol; 2024 Jan; 172():110339. PubMed ID: 37857079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effect of the enzyme complexes comprising agarase, carrageenase and neoagarobiose hydrolase on degradation of the red algae.
    Kang DH; You SK; Joo YC; Shin SK; Hyeon JE; Han SO
    Bioresour Technol; 2018 Feb; 250():666-672. PubMed ID: 29220811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agarase: review of major sources, categories, purification method, enzyme characteristics and applications.
    Fu XT; Kim SM
    Mar Drugs; 2010 Jan; 8(1):200-18. PubMed ID: 20161978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable and complete conversion of agarose into oligosaccharides and monosaccharides by microwave-assisted hydrothermal and enzymatic hydrolysis and antibacterial activity of agaro-oligosaccharides.
    Shen J; Dan M; Li Y; Tao X; Zhao G; Wang D
    Int J Biol Macromol; 2023 Nov; 251():126319. PubMed ID: 37582437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red macroalgae as a sustainable resource for bio-based products.
    Yun EJ; Choi IG; Kim KH
    Trends Biotechnol; 2015 May; 33(5):247-9. PubMed ID: 25818231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of Bacterial Expansin on Agarolytic Complexes to Enhance the Degrading Activity of Red Algae by Control of Gelling Properties.
    Jeong DW; Hyeon JE; Joo YC; Shin SK; Han SO
    Mar Biotechnol (NY); 2018 Feb; 20(1):1-9. PubMed ID: 29151139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.