BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32037019)

  • 1. A reduced-order model of a patient-specific cerebral aneurysm for rapid evaluation and treatment planning.
    Han S; Schirmer CM; Modarres-Sadeghi Y
    J Biomech; 2020 Apr; 103():109653. PubMed ID: 32037019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.
    Xiang J; Siddiqui AH; Meng H
    J Biomech; 2014 Dec; 47(16):3882-90. PubMed ID: 25446264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standardized viscosity as a source of error in computational fluid dynamic simulations of cerebral aneurysms.
    Fillingham P; Belur N; Sweem R; Barbour MC; Marsh LMM; Aliseda A; Levitt MR
    Med Phys; 2024 Feb; 51(2):1499-1508. PubMed ID: 38150511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reduced-order model for wall shear stress in abdominal aortic aneurysms by proper orthogonal decomposition.
    Chang GH; Schirmer CM; Modarres-Sadeghi Y
    J Biomech; 2017 Mar; 54():33-43. PubMed ID: 28238422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the Risk of Intracranial Aneurysm Rupture Using Morphological and Hemodynamic Biomarkers Evaluated from Magnetic Resonance Fluid Dynamics and Computational Fluid Dynamics.
    Perera R; Isoda H; Ishiguro K; Mizuno T; Takehara Y; Terada M; Tanoi C; Naito T; Sakahara H; Hiramatsu H; Namba H; Izumi T; Wakabayashi T; Kosugi T; Onishi Y; Alley M; Komori Y; Ikeda M; Naganawa S
    Magn Reson Med Sci; 2020 Dec; 19(4):333-344. PubMed ID: 31956175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-patient variations in flow boundary conditions at middle cerebral artery from 7T PC-MRI and influence on Computational Fluid Dynamics of intracranial aneurysms.
    Rajabzadeh-Oghaz H; van Ooij P; Veeturi SS; Tutino VM; Zwanenburg JJ; Meng H
    Comput Biol Med; 2020 May; 120():103759. PubMed ID: 32421656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CFD Modelling of Local Hemodynamics in Intracranial Aneurysms Harboring Arterial Branches.
    Krylov V; Grigoryeva E; Dolotova D; Blagosklonova E; Gavrilov A
    Stud Health Technol Inform; 2017; 238():64-67. PubMed ID: 28679888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fluid dynamics as a risk assessment tool for aneurysm rupture.
    Murayama Y; Fujimura S; Suzuki T; Takao H
    Neurosurg Focus; 2019 Jul; 47(1):E12. PubMed ID: 31261116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Fluid Dynamics in Cerebral Aneurysms-Explaining the Aneurysm's Shape and the Timing of Rupture with Theoretical Physics.
    Ansari A
    World Neurosurg; 2019 Jun; 126():591-592. PubMed ID: 30930315
    [No Abstract]   [Full Text] [Related]  

  • 11. Stagnation and complex flow in ruptured cerebral aneurysms: a possible association with hemostatic pattern.
    Tsuji M; Ishikawa T; Ishida F; Furukawa K; Miura Y; Shiba M; Sano T; Tanemura H; Umeda Y; Shimosaka S; Suzuki H
    J Neurosurg; 2017 May; 126(5):1566-1572. PubMed ID: 27257837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extending statistical learning for aneurysm rupture assessment to Finnish and Japanese populations using morphology, hemodynamics, and patient characteristics.
    Detmer FJ; Hadad S; Chung BJ; Mut F; Slawski M; Juchler N; Kurtcuoglu V; Hirsch S; Bijlenga P; Uchiyama Y; Fujimura S; Yamamoto M; Murayama Y; Takao H; Koivisto T; Frösen J; Cebral JR
    Neurosurg Focus; 2019 Jul; 47(1):E16. PubMed ID: 31261120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinctive flow pattern of wall shear stress and oscillatory shear index: similarity and dissimilarity in ruptured and unruptured cerebral aneurysm blebs.
    Kawaguchi T; Nishimura S; Kanamori M; Takazawa H; Omodaka S; Sato K; Maeda N; Yokoyama Y; Midorikawa H; Sasaki T; Nishijima M
    J Neurosurg; 2012 Oct; 117(4):774-80. PubMed ID: 22920960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approximating hemodynamics of cerebral aneurysms with steady flow simulations.
    Geers AJ; Larrabide I; Morales HG; Frangi AF
    J Biomech; 2014 Jan; 47(1):178-85. PubMed ID: 24262847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points.
    Fukazawa K; Ishida F; Umeda Y; Miura Y; Shimosaka S; Matsushima S; Taki W; Suzuki H
    World Neurosurg; 2015 Jan; 83(1):80-6. PubMed ID: 23403347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between hemodynamic parameters and cerebral aneurysm initiation.
    Tanaka K; Takao H; Suzuki T; Fujimura S; Uchiyama Y; Otani K; Ishibashi T; Mamori H; Fukudome K; Yamamoto M; Murayama Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1347-1350. PubMed ID: 30440641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions.
    Evju Ø; Valen-Sendstad K; Mardal KA
    J Biomech; 2013 Nov; 46(16):2802-8. PubMed ID: 24099744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamic characteristics associated with thinner regions of intracranial aneurysm wall.
    Jiang P; Liu Q; Wu J; Chen X; Li M; Li Z; Yang S; Guo R; Gao B; Cao Y; Wang R; Wang S
    J Clin Neurosci; 2019 Sep; 67():185-190. PubMed ID: 31253387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Usage of computational method for hemodynamic analysis of intracranial aneurysm rupture risk in different geometrical aspects.
    Fattahi M; Abdollahi SA; Alibak AH; Hosseini S; Dang P
    Sci Rep; 2023 Nov; 13(1):20749. PubMed ID: 38007602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.