These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 32037190)

  • 21. Enhancing the bioproduction of value-added aroma compounds via solid-state fermentation of sugarcane bagasse and sugar beet molasses: Operational strategies and scaling-up of the process.
    Martínez O; Sánchez A; Font X; Barrena R
    Bioresour Technol; 2018 Sep; 263():136-144. PubMed ID: 29738976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry?
    Farzad S; Mandegari MA; Guo M; Haigh KF; Shah N; Görgens JF
    Biotechnol Biofuels; 2017; 10():87. PubMed ID: 28400858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sustainable processing of food waste for production of bio-based products for circular bioeconomy.
    Sharma P; Gaur VK; Sirohi R; Varjani S; Hyoun Kim S; Wong JWC
    Bioresour Technol; 2021 Apr; 325():124684. PubMed ID: 33493748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biorefineries in circular bioeconomy: A comprehensive review.
    Ubando AT; Felix CB; Chen WH
    Bioresour Technol; 2020 Mar; 299():122585. PubMed ID: 31901305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Briquetting of sugarcane bagasse as a proper waste management technology in Vietnam.
    Brunerová A; Roubík H; Brožek M; Van Dung D; Phung LD; Hasanudin U; Iryani DA; Herák D
    Waste Manag Res; 2020 Nov; 38(11):1239-1250. PubMed ID: 32686610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sugarcane-Biorefinery.
    Vaz S
    Adv Biochem Eng Biotechnol; 2019; 166():125-136. PubMed ID: 28303295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fumaric acid production using renewable resources from biodiesel and cane sugar production processes.
    Papadaki A; Papapostolou H; Alexandri M; Kopsahelis N; Papanikolaou S; de Castro AM; Freire DMG; Koutinas AA
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35960-35970. PubMed ID: 29654455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical biorefinery: A low-cost and non-waste concept for promoting sustainable circular bioeconomy.
    Igbokwe VC; Ezugworie FN; Onwosi CO; Aliyu GO; Obi CJ
    J Environ Manage; 2022 Mar; 305():114333. PubMed ID: 34952394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities - A review.
    Bilal M; Iqbal HMN
    Food Res Int; 2019 Sep; 123():226-240. PubMed ID: 31284972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.
    Koutinas AA; Vlysidis A; Pleissner D; Kopsahelis N; Lopez Garcia I; Kookos IK; Papanikolaou S; Kwan TH; Lin CS
    Chem Soc Rev; 2014 Apr; 43(8):2587-627. PubMed ID: 24424298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Life cycle and economic assessment of sugarcane bagasse valorization to lactic acid.
    Munagala M; Shastri Y; Nalawade K; Konde K; Patil S
    Waste Manag; 2021 May; 126():52-64. PubMed ID: 33743339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Waste derived bioeconomy in India: A perspective.
    S VM; P C; Dahiya S; A NK
    N Biotechnol; 2018 Jan; 40(Pt A):60-69. PubMed ID: 28676418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing.
    Janke L; Leite A; Nikolausz M; Schmidt T; Liebetrau J; Nelles M; Stinner W
    Int J Mol Sci; 2015 Aug; 16(9):20685-703. PubMed ID: 26404248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol.
    Vieira S; Barros MV; Sydney ACN; Piekarski CM; de Francisco AC; Vandenberghe LPS; Sydney EB
    Bioresour Technol; 2020 Mar; 299():122635. PubMed ID: 31882200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lignin valorization: Status, challenges and opportunities.
    Sethupathy S; Murillo Morales G; Gao L; Wang H; Yang B; Jiang J; Sun J; Zhu D
    Bioresour Technol; 2022 Mar; 347():126696. PubMed ID: 35026423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability.
    Sharma P; Gaur VK; Gupta S; Varjani S; Pandey A; Gnansounou E; You S; Ngo HH; Wong JWC
    Sci Total Environ; 2022 Mar; 811():152357. PubMed ID: 34921885
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights on sustainable approaches for production and applications of value added products.
    Sodhi AS; Sharma N; Bhatia S; Verma A; Soni S; Batra N
    Chemosphere; 2022 Jan; 286(Pt 1):131623. PubMed ID: 34346348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Food Waste Biorefinery: Pathway towards Circular Bioeconomy.
    Tsegaye B; Jaiswal S; Jaiswal AK
    Foods; 2021 May; 10(6):. PubMed ID: 34073698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. COVID-19 and industrial waste mitigation via thermochemical technologies towards a circular economy: A state-of-the-art review.
    Felix CB; Ubando AT; Chen WH; Goodarzi V; Ashokkumar V
    J Hazard Mater; 2022 Feb; 423(Pt B):127215. PubMed ID: 34844348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioelectrochemical systems for a circular bioeconomy.
    Jung S; Lee J; Park YK; Kwon EE
    Bioresour Technol; 2020 Mar; 300():122748. PubMed ID: 31937485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.