These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32037282)

  • 21. In vivo coronary lesion differentiation with computed tomography angiography and intravascular ultrasound as compared to optical coherence tomography.
    Wieringa WG; Lexis CP; Lipsic E; van der Werf HW; Burgerhof JG; Hagens VE; Bartels GL; Broersen A; Schurer RA; Tan ES; van der Harst P; van den Heuvel AF; Willems TP; Pundziute G
    J Cardiovasc Comput Tomogr; 2017; 11(2):111-118. PubMed ID: 28169175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coronary artery plaque growth: A two-way coupled shear stress-driven model.
    Arzani A
    Int J Numer Method Biomed Eng; 2020 Jan; 36(1):e3293. PubMed ID: 31820589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Endothelial Shear Stress and Plaque Erosion: A Computational Fluid Dynamics and Optical Coherence Tomography Study.
    Yamamoto E; Thondapu V; Poon E; Sugiyama T; Fracassi F; Dijkstra J; Lee H; Ooi A; Barlis P; Jang IK
    JACC Cardiovasc Imaging; 2019 Feb; 12(2):374-375. PubMed ID: 30343069
    [No Abstract]   [Full Text] [Related]  

  • 24. High endothelial shear stress and stress gradient at plaque erosion persist up to 12 months.
    Kim HO; Jiang B; Poon EKW; Thondapu V; Kim CJ; Kurihara O; Araki M; Nakajima A; Mamon C; Dijkstra J; Lee H; Ooi A; Barlis P; Jang IK
    Int J Cardiol; 2022 Jun; 357():1-7. PubMed ID: 35306029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current clinical applications of coronary optical coherence tomography.
    Kume T; Uemura S
    Cardiovasc Interv Ther; 2018 Jan; 33(1):1-10. PubMed ID: 28710605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated Coronary Optical Coherence Tomography Feature Extraction with Application to Three-Dimensional Reconstruction.
    Carpenter HJ; Ghayesh MH; Zander AC; Li J; Di Giovanni G; Psaltis PJ
    Tomography; 2022 May; 8(3):1307-1349. PubMed ID: 35645394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patient-Specific Modeling of Stented Coronary Arteries Reconstructed from Optical Coherence Tomography: Towards a Widespread Clinical Use of Fluid Dynamics Analyses.
    Chiastra C; Migliori S; Burzotta F; Dubini G; Migliavacca F
    J Cardiovasc Transl Res; 2018 Apr; 11(2):156-172. PubMed ID: 29282628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Endothelial shear stress and coronary plaque characteristics in humans: combined frequency-domain optical coherence tomography and computational fluid dynamics study.
    Vergallo R; Papafaklis MI; Yonetsu T; Bourantas CV; Andreou I; Wang Z; Fujimoto JG; McNulty I; Lee H; Biasucci LM; Crea F; Feldman CL; Michalis LK; Stone PH; Jang IK
    Circ Cardiovasc Imaging; 2014 Nov; 7(6):905-11. PubMed ID: 25190591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA.
    Toutouzas K; Chatzizisis YS; Riga M; Giannopoulos A; Antoniadis AP; Tu S; Fujino Y; Mitsouras D; Doulaverakis C; Tsampoulatidis I; Koutkias VG; Bouki K; Li Y; Chouvarda I; Cheimariotis G; Maglaveras N; Kompatsiaris I; Nakamura S; Reiber JH; Rybicki F; Karvounis H; Stefanadis C; Tousoulis D; Giannoglou GD
    Atherosclerosis; 2015 Jun; 240(2):510-9. PubMed ID: 25932791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of local flow haemodynamics on atherosclerosis in coronary artery bifurcations.
    Antoniadis AP; Giannopoulos AA; Wentzel JJ; Joner M; Giannoglou GD; Virmani R; Chatzizisis YS
    EuroIntervention; 2015; 11 Suppl V():V18-22. PubMed ID: 25983161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Validation of Wall Shear Stress Assessment in Non-invasive Coronary CTA versus Invasive Imaging: A Patient-Specific Computational Study.
    Eslami P; Hartman EMJ; Albaghadai M; Karady J; Jin Z; Thondapu V; Cefalo NV; Lu MT; Coskun A; Stone PH; Marsden A; Hoffmann U; Wentzel JJ
    Ann Biomed Eng; 2021 Apr; 49(4):1151-1168. PubMed ID: 33067688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical Characterization of Coronary Atherosclerosis With Dual-Modality OCT and Near-Infrared Autofluorescence Imaging.
    Ughi GJ; Wang H; Gerbaud E; Gardecki JA; Fard AM; Hamidi E; Vacas-Jacques P; Rosenberg M; Jaffer FA; Tearney GJ
    JACC Cardiovasc Imaging; 2016 Nov; 9(11):1304-1314. PubMed ID: 26971006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlinear multiscale analysis of coronary atherosclerotic vulnerable plaque artery: fluid-structural modeling with micromechanics.
    Massarwa E; Aronis Z; Eliasy R; Einav S; Haj-Ali R
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1889-1901. PubMed ID: 34191188
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined optical coherence tomography morphologic and fractional flow reserve hemodynamic assessment of non- culprit lesions to better predict adverse event outcomes in diabetes mellitus patients: COMBINE (OCT-FFR) prospective study. Rationale and design.
    Kennedy MW; Fabris E; Ijsselmuiden AJ; Nef H; Reith S; Escaned J; Alfonso F; van Royen N; Wojakowski W; Witkowski A; Indolfi C; Ottervanger JP; Suryapranata H; Kedhi E
    Cardiovasc Diabetol; 2016 Oct; 15(1):144. PubMed ID: 27724869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fusion of optical coherence tomography and coronary angiography - in vivo assessment of shear stress in plaque rupture.
    Bourantas CV; Papafaklis MI; Naka KK; Tsakanikas VD; Lysitsas DN; Alamgir FM; Fotiadis DI; Michalis LK
    Int J Cardiol; 2012 Mar; 155(2):e24-6. PubMed ID: 21807428
    [No Abstract]   [Full Text] [Related]  

  • 36. Imaging assessment and accuracy in coronary artery autopsy: comparison of frequency-domain optical coherence tomography with intravascular ultrasound and histology.
    Shimokado A; Kubo T; Matsuo Y; Ino Y; Shiono Y; Shimamura K; Katayama Y; Taruya A; Nishiguchi T; Kashiwagi M; Kitabata H; Tanaka A; Hozumi T; Akasaka T
    Int J Cardiovasc Imaging; 2019 Oct; 35(10):1785-1790. PubMed ID: 31175528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of superficial coronary vessel wall deformation and stress: validation of in silico models and human coronary arteries in vivo.
    Wu X; von Birgelen C; Li Z; Zhang S; Huang J; Liang F; Li Y; Wijns W; Tu S
    Int J Cardiovasc Imaging; 2018 Jun; 34(6):849-861. PubMed ID: 29397475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of the local hemodynamic environment on the de novo development and progression of eccentric coronary atherosclerosis in humans: insights from PREDICTION.
    Papafaklis MI; Takahashi S; Antoniadis AP; Coskun AU; Tsuda M; Mizuno S; Andreou I; Nakamura S; Makita Y; Hirohata A; Saito S; Feldman CL; Stone PH
    Atherosclerosis; 2015 May; 240(1):205-11. PubMed ID: 25801012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oscillatory wall shear stress is a dominant flow characteristic affecting lesion progression patterns and plaque vulnerability in patients with coronary artery disease.
    Timmins LH; Molony DS; Eshtehardi P; McDaniel MC; Oshinski JN; Giddens DP; Samady H
    J R Soc Interface; 2017 Feb; 14(127):. PubMed ID: 28148771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clinical Relevance of
    Lee JM; Bang JI; Koo BK; Hwang D; Park J; Zhang J; Yaliang T; Suh M; Paeng JC; Shiono Y; Kubo T; Akasaka T
    Circ Cardiovasc Imaging; 2017 Nov; 10(11):. PubMed ID: 29133478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.