BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32037347)

  • 1. Influencing Factors for Determining the Crystallinity of Native Cellulose by X-ray Diffraction.
    Yu S; Liu Z; Xu N; Chen J; Gao Y
    Anal Sci; 2020 Aug; 36(8):947-951. PubMed ID: 32037347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Fourier Series in X-ray Diffraction (XRD) Analysis and Fourier-Transform Infrared Spectroscopy (FTIR) for Estimation of Crystallinity in Cellulose from Different Sources.
    Montoya-Escobar N; Ospina-Acero D; Velásquez-Cock JA; Gómez-Hoyos C; Serpa Guerra A; Gañan Rojo PF; Vélez Acosta LM; Escobar JP; Correa-Hincapié N; Triana-Chávez O; Zuluaga Gallego R; Stefani PM
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II.
    Nam S; French AD; Condon BD; Concha M
    Carbohydr Polym; 2016 Jan; 135():1-9. PubMed ID: 26453844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study.
    Lopez-Rubio A; Flanagan BM; Gilbert EP; Gidley MJ
    Biopolymers; 2008 Sep; 89(9):761-8. PubMed ID: 18428208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes.
    Kljun A; Benians TA; Goubet F; Meulewaeter F; Knox JP; Blackburn RS
    Biomacromolecules; 2011 Nov; 12(11):4121-6. PubMed ID: 21981266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved X-ray diffraction method for cellulose crystallinity measurement.
    Ju X; Bowden M; Brown EE; Zhang X
    Carbohydr Polym; 2015 Jun; 123():476-81. PubMed ID: 25843882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.
    Liu Y; Thibodeaux D; Gamble G; Bauer P; VanDerveer D
    Appl Spectrosc; 2012 Aug; 66(8):983-6. PubMed ID: 22800914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of cellulose crystallinity from powder diffraction diagrams.
    Lindner B; Petridis L; Langan P; Smith JC
    Biopolymers; 2015 Feb; 103(2):67-73. PubMed ID: 25269646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-FTIR combined with curve fitting method to study cellulose crystallinity of developing cotton fibers.
    Zhang L; Li X; Zhang S; Gao Q; Lu Q; Peng R; Xu P; Shang H; Yuan Y; Zou H
    Anal Bioanal Chem; 2021 Feb; 413(5):1313-1320. PubMed ID: 33404744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Amorphization of Chitosan with Different Molecular Weights.
    Podgorbunskikh E; Kuskov T; Rychkov D; Lomovskii O; Bychkov A
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36298017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Rietveld method as a tool to quantify the amorphous amount of microcrystalline cellulose.
    De Figueiredo LP; Ferreira FF
    J Pharm Sci; 2014 May; 103(5):1394-9. PubMed ID: 24590572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study of Crystallinity Performance of Pretreated Bamboo Fibers Based on X-Ray Diffraction and NMR].
    Chu J; Zhang JH; Ma L; Lu HD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):256-61. PubMed ID: 30221888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the crystallinity of cephalexin in pharmaceutical formulations by chemometrical near-infrared spectroscopy.
    Fukui Y; Otsuka M
    Drug Dev Ind Pharm; 2010 Jan; 36(1):72-80. PubMed ID: 19656006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multivariate statistical analysis of X-ray data from cellulose: a new method to determine degree of crystallinity and predict hydrolysis rates.
    Bansal P; Hall M; Realff MJ; Lee JH; Bommarius AS
    Bioresour Technol; 2010 Jun; 101(12):4461-71. PubMed ID: 20172714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallization kinetics of amorphous griseofulvin by pattern fitting procedure using X-ray diffraction data.
    Yamamura S; Takahira R; Momose Y
    Pharm Res; 2007 May; 24(5):880-7. PubMed ID: 17372690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison and assessment of methods for cellulose crystallinity determination.
    Salem KS; Kasera NK; Rahman MA; Jameel H; Habibi Y; Eichhorn SJ; French AD; Pal L; Lucia LA
    Chem Soc Rev; 2023 Sep; 52(18):6417-6446. PubMed ID: 37591800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Terahertz Spectroscopy Technology for Crystallinity and Crystal Structure Analysis of Cellulose.
    Yang R; Dong X; Chen G; Lin F; Huang Z; Manzo M; Mao H
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33375052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance.
    Park S; Baker JO; Himmel ME; Parilla PA; Johnson DK
    Biotechnol Biofuels; 2010 May; 3():10. PubMed ID: 20497524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Completely amorphous cellulose biosynthesized in agitated culture at low temperature.
    Hu Y; Sheng J; Yan Z; Ke Q
    Int J Biol Macromol; 2018 Oct; 117():967-973. PubMed ID: 29883701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of starch crystallinity with the Fourier-transform terahertz spectrometer.
    Nakajima S; Horiuchi S; Ikehata A; Ogawa Y
    Carbohydr Polym; 2021 Jun; 262():117928. PubMed ID: 33838806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.