BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32037347)

  • 21. Native Cellulose: Structure, Characterization and Thermal Properties.
    Poletto M; Ornaghi HL; Zattera AJ
    Materials (Basel); 2014 Aug; 7(9):6105-6119. PubMed ID: 28788179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystalline characteristics of cellulose fiber and film regenerated from ionic liquid solution.
    Sun L; Chen JY; Jiang W; Lynch V
    Carbohydr Polym; 2015 Mar; 118():150-5. PubMed ID: 25542120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel method for producing amorphous cellulose only by milling.
    Shimura R; Nishioka A; Kano I; Koda T; Nishio T
    Carbohydr Polym; 2014 Feb; 102():645-8. PubMed ID: 24507330
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of Differential Scanning Calorimetry, Powder X-ray Diffraction, and Solid-state Nuclear Magnetic Resonance Spectroscopy for Measuring Crystallinity in Amorphous Solid Dispersions - Application to Drug-in-polymer Solubility.
    Jarrells TW; Munson EJ
    J Pharm Sci; 2022 Oct; 111(10):2765-2778. PubMed ID: 35421430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel X-ray diffraction approach to assess the crystallinity of regenerated cellulose fibers.
    Gentile L; Sixta H; Giannini C; Olsson U
    IUCrJ; 2022 Jul; 9(Pt 4):492-496. PubMed ID: 35844479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A method for characterizing short-range molecular order in amorphous starch.
    Liu X; Luan H; Jinglin Y; Wang S; Wang S; Copeland L
    Carbohydr Polym; 2020 Aug; 242():116405. PubMed ID: 32564834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of size classifications on the crystallinity index of
    Adekoya MA; Liu S; Oluyamo SS; Oyeleye OT; Ogundare RT
    Heliyon; 2022 Dec; 8(12):e12019. PubMed ID: 36531628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental and Theoretical Study on Terahertz Spectra for Regenerated Cellulose.
    Dai ZL; Xu XD; Gu Y; Zou RJ; Han SS; Peng Y; Lian YX; Wang F; Li XR; Chen ZG; Sun MH; Jiang YD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Mar; 37(3):697-703. PubMed ID: 30148547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Statistical Optimization for Acid Hydrolysis of Microcrystalline Cellulose and Its Physiochemical Characterization by Using Metal Ion Catalyst.
    Karim MZ; Chowdhury ZZ; Hamid SBA; Ali ME
    Materials (Basel); 2014 Oct; 7(10):6982-6999. PubMed ID: 28788226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supramolecular transitions in native cellulose-I during progressive oxidation reaction leading to quasi-spherical nanoparticles of 6-carboxycellulose.
    Sharma PR; Rajamohanan PR; Varma AJ
    Carbohydr Polym; 2014 Nov; 113():615-23. PubMed ID: 25256525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystallinity of lyophilised carrot cell wall components.
    Georget DM; Cairns P; Smith AC; Waldron KW
    Int J Biol Macromol; 1999 Dec; 26(5):325-31. PubMed ID: 10628533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis.
    Cheng G; Varanasi P; Li C; Liu H; Melnichenko YB; Simmons BA; Kent MS; Singh S
    Biomacromolecules; 2011 Apr; 12(4):933-41. PubMed ID: 21361369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Preparation and spectrum properties of cellulose nanoparticles].
    Tang LR; Huang B; Dai DS; Ou W; Lin YP; Chen XR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):1876-9. PubMed ID: 20827990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy.
    Oh SY; Yoo DI; Shin Y; Kim HC; Kim HY; Chung YS; Park WH; Youk JH
    Carbohydr Res; 2005 Oct; 340(15):2376-91. PubMed ID: 16153620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility.
    Mittal A; Katahira R; Himmel ME; Johnson DK
    Biotechnol Biofuels; 2011 Oct; 4():41. PubMed ID: 22011342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Spectral property of one-dimensional rodlike nano cellulose].
    Zhang LP; Tang HW; Qu P; Li S; Qin Z; Sun SQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Apr; 31(4):1097-100. PubMed ID: 21714268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD.
    Zhang J; Wang Y; Zhang L; Zhang R; Liu G; Cheng G
    Bioresour Technol; 2014 Jan; 151():402-5. PubMed ID: 24269347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns.
    Bates S; Zografi G; Engers D; Morris K; Crowley K; Newman A
    Pharm Res; 2006 Oct; 23(10):2333-49. PubMed ID: 17021963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial structure characteristic analysis of corn stover during alkali and biological co-pretreatment using XRD.
    Tianxue Y; Li Y; Haobo H; Beidou X; Liansheng H; Xiaowei W; Caihong H; Kun W; Ying Z; Bin C
    Bioresour Technol; 2014 Jul; 163():356-9. PubMed ID: 24821272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring crystalline structural variations of cellulose during pulp beating of tobacco stems.
    Zhao D; Yang F; Dai Y; Tao F; Shen Y; Duan W; Zhou X; Ma H; Tang L; Li J
    Carbohydr Polym; 2017 Oct; 174():146-153. PubMed ID: 28821053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.