These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
592 related articles for article (PubMed ID: 32037739)
1. The rapidly advancing Class 2 CRISPR-Cas technologies: A customizable toolbox for molecular manipulations. Wang J; Zhang C; Feng B J Cell Mol Med; 2020 Mar; 24(6):3256-3270. PubMed ID: 32037739 [TBL] [Abstract][Full Text] [Related]
2. Characterization and Repurposing of Type I and Type II CRISPR-Cas Systems in Bacteria. Hidalgo-Cantabrana C; Goh YJ; Barrangou R J Mol Biol; 2019 Jan; 431(1):21-33. PubMed ID: 30261168 [TBL] [Abstract][Full Text] [Related]
3. Type III CRISPR-Cas System: Introduction And Its Application for Genetic Manipulations. Liu T; Pan S; Li Y; Peng N; She Q Curr Issues Mol Biol; 2018; 26():1-14. PubMed ID: 28879852 [TBL] [Abstract][Full Text] [Related]
6. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. Ishino Y; Krupovic M; Forterre P J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29358495 [TBL] [Abstract][Full Text] [Related]
8. Shooting the messenger: RNA-targetting CRISPR-Cas systems. Zhu Y; Klompe SE; Vlot M; van der Oost J; Staals RHJ Biosci Rep; 2018 Jun; 38(3):. PubMed ID: 29748239 [TBL] [Abstract][Full Text] [Related]
9. The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Murugan K; Babu K; Sundaresan R; Rajan R; Sashital DG Mol Cell; 2017 Oct; 68(1):15-25. PubMed ID: 28985502 [TBL] [Abstract][Full Text] [Related]
10. Anti-CRISPR proteins targeting the CRISPR-Cas system enrich the toolkit for genetic engineering. Liu Q; Zhang H; Huang X FEBS J; 2020 Feb; 287(4):626-644. PubMed ID: 31730297 [TBL] [Abstract][Full Text] [Related]
11. Type II anti-CRISPR proteins as a new tool for synthetic biology. Zhang Y; Marchisio MA RNA Biol; 2021 Aug; 18(8):1085-1098. PubMed ID: 32991234 [TBL] [Abstract][Full Text] [Related]
12. Exploration of Microbial Diversity to Discover Novel Molecular Technologies. Zhang F Keio J Med; 2019; 68(1):26. PubMed ID: 30905885 [TBL] [Abstract][Full Text] [Related]
13. Finally, Archaea Get Their CRISPR-Cas Toolbox. Gophna U; Allers T; Marchfelder A Trends Microbiol; 2017 Jun; 25(6):430-432. PubMed ID: 28391963 [TBL] [Abstract][Full Text] [Related]
14. CRISPR-Cas systems: ushering in the new genome editing era. Perez Rojo F; Nyman RKM; Johnson AAT; Navarro MP; Ryan MH; Erskine W; Kaur P Bioengineered; 2018; 9(1):214-221. PubMed ID: 29968520 [TBL] [Abstract][Full Text] [Related]
15. Editor's cut: DNA cleavage by CRISPR RNA-guided nucleases Cas9 and Cas12a. Swartjes T; Staals RHJ; van der Oost J Biochem Soc Trans; 2020 Feb; 48(1):207-219. PubMed ID: 31872209 [TBL] [Abstract][Full Text] [Related]
16. Characterization and applications of Type I CRISPR-Cas systems. Hidalgo-Cantabrana C; Barrangou R Biochem Soc Trans; 2020 Feb; 48(1):15-23. PubMed ID: 31922192 [TBL] [Abstract][Full Text] [Related]
17. Rapid Control of Genome Editing in Human Cells by Chemical-Inducible CRISPR-Cas Systems. Liu KI; Ramli MNB; Sutrisnoh NB; Tan MH Methods Mol Biol; 2018; 1772():267-288. PubMed ID: 29754234 [TBL] [Abstract][Full Text] [Related]
18. Therapeutic Genome Editing and its Potential Enhancement through CRISPR Guide RNA and Cas9 Modifications. Batzir NA; Tovin A; Hendel A Pediatr Endocrinol Rev; 2017 Jun; 14(4):353-363. PubMed ID: 28613045 [TBL] [Abstract][Full Text] [Related]
19. [CRISPR/CAS9, the King of Genome Editing Tools]. Bannikov AV; Lavrov AV Mol Biol (Mosk); 2017; 51(4):582-594. PubMed ID: 28900076 [TBL] [Abstract][Full Text] [Related]
20. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica. Schwartz C; Wheeldon I Methods Mol Biol; 2018; 1772():327-345. PubMed ID: 29754237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]