BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32037819)

  • 1. Photolabile Linkers: Exploiting Labile Bond Chemistry to Control Mode and Rate of Hydrogel Degradation and Protein Release.
    LeValley PJ; Neelarapu R; Sutherland BP; Dasgupta S; Kloxin CJ; Kloxin AM
    J Am Chem Soc; 2020 Mar; 142(10):4671-4679. PubMed ID: 32037819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of photodegradable macromers for conjugation and release of bioactive molecules.
    Griffin DR; Schlosser JL; Lam SF; Nguyen TH; Maynard HD; Kasko AM
    Biomacromolecules; 2013 Apr; 14(4):1199-207. PubMed ID: 23506440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-demand and tunable dual wavelength release of antibody using light-responsive hydrogels.
    LeValley PJ; Sutherland BP; Jaje J; Gibbs S; Jones M; Gala R; Kloxin CJ; Kiick KL; Kloxin AM
    ACS Appl Bio Mater; 2020 Oct; 3(10):6944-6958. PubMed ID: 34327309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Modular Approach to Sensitized Two-Photon Patterning of Photodegradable Hydrogels.
    Lunzer M; Shi L; Andriotis OG; Gruber P; Markovic M; Thurner PJ; Ossipov D; Liska R; Ovsianikov A
    Angew Chem Int Ed Engl; 2018 Nov; 57(46):15122-15127. PubMed ID: 30191643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photodegradable macromers and hydrogels for live cell encapsulation and release.
    Griffin DR; Kasko AM
    J Am Chem Soc; 2012 Aug; 134(31):13103-7. PubMed ID: 22765384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Light-Responsive Hydrogels with Antimicrobial and Antifouling Capabilities.
    Liu Q; Liu L
    Langmuir; 2019 Feb; 35(5):1450-1457. PubMed ID: 30056704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A thermo-degradable hydrogel with light-tunable degradation and drug release.
    Hu J; Chen Y; Li Y; Zhou Z; Cheng Y
    Biomaterials; 2017 Jan; 112():133-140. PubMed ID: 27760397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cleavable carbamate linkers for controlled protein delivery from hydrogels.
    Hammer N; Brandl FP; Kirchhof S; Goepferich AM
    J Control Release; 2014 Jun; 183():67-76. PubMed ID: 24680687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on photocleavable nitrobenzyl-bovine serum albumin conjugates.
    Self CH; Fawcett MC; Spoors JA; Pulman LB; Thompson S
    Biochem Soc Trans; 1995 May; 23(2):156S. PubMed ID: 7672187
    [No Abstract]   [Full Text] [Related]  

  • 10. Six new photolabile linkers for solid-phase synthesis. 1. Methods of preparation.
    Akerblom EB; Nygren AS; Agback KH
    Mol Divers; 1997-1998; 3(3):137-48. PubMed ID: 9680645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Logic-Based Delivery of Site-Specifically Modified Proteins from Environmentally Responsive Hydrogel Biomaterials.
    Gawade PM; Shadish JA; Badeau BA; DeForest CA
    Adv Mater; 2019 Aug; 31(33):e1902462. PubMed ID: 31265196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel strategy for encapsulation and release of proteins: hydrogels and microgels with acid-labile acetal cross-linkers.
    Murthy N; Thng YX; Schuck S; Xu MC; Fréchet JM
    J Am Chem Soc; 2002 Oct; 124(42):12398-9. PubMed ID: 12381166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile preparation of photodegradable hydrogels by photopolymerization.
    Ki CS; Shih H; Lin CC
    Polymer (Guildf); 2013 Apr; 54(8):2115-2122. PubMed ID: 23894212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injectable Supramolecular Polymer-Nanoparticle Hydrogels for Cell and Drug Delivery Applications.
    Meis CM; Grosskopf AK; Correa S; Appel EA
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33616104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photolabile Linkers for Solid-Phase Synthesis.
    Mikkelsen RJT; Grier KE; Mortensen KT; Nielsen TE; Qvortrup K
    ACS Comb Sci; 2018 Jul; 20(7):377-399. PubMed ID: 29863839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms.
    Kloxin AM; Tibbitt MW; Anseth KS
    Nat Protoc; 2010 Dec; 5(12):1867-87. PubMed ID: 21127482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local environment-dependent kinetics of ester hydrolysis revealed by direct
    Lau CML; Jahanmir G; Chau Y
    Acta Biomater; 2020 Jan; 101():219-226. PubMed ID: 31669542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
    Neumann AJ; Quinn T; Bryant SJ
    Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-induced programmable degradation of carboxymethyl chitosan-based hydrogels.
    Wei Q; Bai J; Wang H; Ma G; Li X; Zhang W; Hu Z
    Carbohydr Polym; 2021 Mar; 256():117609. PubMed ID: 33483085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable multi-phase protein release from in-situ hydrolyzable hydrogel.
    Lau CML; Jahanmir G; Yu Y; Chau Y
    J Control Release; 2021 Jul; 335():75-85. PubMed ID: 33971140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.