BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32037819)

  • 21. Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry.
    Shih H; Lin CC
    Biomacromolecules; 2012 Jul; 13(7):2003-12. PubMed ID: 22708824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrafast in situ forming poly(ethylene glycol)-poly(amido amine) hydrogels with tunable drug release properties via controllable degradation rates.
    Buwalda SJ; Bethry A; Hunger S; Kandoussi S; Coudane J; Nottelet B
    Eur J Pharm Biopharm; 2019 Jun; 139():232-239. PubMed ID: 30954658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hooked on Cryogels: A Carbamate Linker Based Depot for Slow Drug Release.
    Aydin D; Arslan M; Sanyal A; Sanyal R
    Bioconjug Chem; 2017 May; 28(5):1443-1451. PubMed ID: 28441501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shape-Changing Photodegradable Hydrogels for Dynamic 3D Cell Culture.
    Käpylä E; Delgado SM; Kasko AM
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):17885-93. PubMed ID: 27322508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An o-nitrobenzyl scaffold for peptide ligation: synthesis and applications.
    Marinzi C; Offer J; Longhi R; Dawson PE
    Bioorg Med Chem; 2004 May; 12(10):2749-57. PubMed ID: 15110856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flash photolytic release of alcohols from photolabile carbamates or carbonates is rate-limited by decarboxylation of the photoproduct.
    Papageorgiou G; Barth A; Corrie JE
    Photochem Photobiol Sci; 2005 Feb; 4(2):216-20. PubMed ID: 15696240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polysaccharide-based hydrogels for the immobilization and controlled release of bovine serum albumin.
    Varnier K; Vieira T; Wolf M; Belfiore LA; Tambourgi EB; Paulino AT
    Int J Biol Macromol; 2018 Dec; 120(Pt A):522-528. PubMed ID: 30165142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Injectable and Self-Healing Hydrogels with Double-Dynamic Bond Tunable Mechanical, Gel-Sol Transition and Drug Delivery Properties for Promoting Periodontium Regeneration in Periodontitis.
    Guo H; Huang S; Yang X; Wu J; Kirk TB; Xu J; Xu A; Xue W
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61638-61652. PubMed ID: 34908393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioactive hydrogels with enhanced initial and sustained cell interactions.
    Browning MB; Russell B; Rivera J; Höök M; Cosgriff-Hernandez EM
    Biomacromolecules; 2013 Jul; 14(7):2225-33. PubMed ID: 23758437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extended and sequential delivery of protein from injectable thermoresponsive hydrogels.
    Nelson DM; Ma Z; Leeson CE; Wagner WR
    J Biomed Mater Res A; 2012 Mar; 100(3):776-85. PubMed ID: 22237975
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture.
    Hao Y; Shih H; Muňoz Z; Kemp A; Lin CC
    Acta Biomater; 2014 Jan; 10(1):104-14. PubMed ID: 24021231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-activatable prodrugs based on hyaluronic acid biomaterials.
    Ossipov DA; Romero AB; Ossipova E
    Carbohydr Polym; 2018 Jan; 180():145-155. PubMed ID: 29103490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of Hydrolytically Degradable Polyethylene Glycol Crosslinkers for Facile Control of Hydrogel Degradation.
    Kroger SM; Hill L; Jain E; Stock A; Bracher PJ; He F; Zustiak SP
    Macromol Biosci; 2020 Oct; 20(10):e2000085. PubMed ID: 32734673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and characterization of photolabile o-nitrobenzyl derivatives of urea.
    Wieboldt R; Ramesh D; Jabri E; Karplus PA; Carpenter BK; Hess GP
    J Org Chem; 2002 Dec; 67(25):8827-31. PubMed ID: 12467395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-Term Controlled Protein Release from Poly(Ethylene Glycol) Hydrogels by Modulating Mesh Size and Degradation.
    Tong X; Lee S; Bararpour L; Yang F
    Macromol Biosci; 2015 Dec; 15(12):1679-86. PubMed ID: 26259711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning.
    Xu F; Gough I; Dorogin J; Sheardown H; Hoare T
    Acta Biomater; 2020 Mar; 104():135-146. PubMed ID: 31904560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversible Control of Network Properties in Azobenzene-Containing Hyaluronic Acid-Based Hydrogels.
    Rosales AM; Rodell CB; Chen MH; Morrow MG; Anseth KS; Burdick JA
    Bioconjug Chem; 2018 Apr; 29(4):905-913. PubMed ID: 29406696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Release of model proteins and basic fibroblast growth factor from in situ forming degradable dextran hydrogels.
    Hiemstra C; Zhong Z; van Steenbergen MJ; Hennink WE; Feijen J
    J Control Release; 2007 Sep; 122(1):71-8. PubMed ID: 17658651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol).
    Loh XJ; Goh SH; Li J
    Biomaterials; 2007 Oct; 28(28):4113-23. PubMed ID: 17573109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Versatile composite hydrogels for drug delivery and beyond.
    Chiang YH; Wu MJ; Hsu WC; Hu TM
    J Mater Chem B; 2020 Oct; 8(38):8830-8837. PubMed ID: 33026385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.