These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 32038043)
1. The thrombospondin module 1 domain of the matricellular protein CCN3 shows an atypical disulfide pattern and incomplete CWR layers. Xu ER; Lafita A; Bateman A; Hyvönen M Acta Crystallogr D Struct Biol; 2020 Feb; 76(Pt 2):124-134. PubMed ID: 32038043 [TBL] [Abstract][Full Text] [Related]
2. Biophysical characterization, including disulfide bond assignments, of the anti-angiogenic type 1 domains of human thrombospondin-1. Huwiler KG; Vestling MM; Annis DS; Mosher DF Biochemistry; 2002 Dec; 41(48):14329-39. PubMed ID: 12450399 [TBL] [Abstract][Full Text] [Related]
4. Calcium-induced conformational changes of Thrombospondin-1 signature domain: implications for vascular disease. Gupta A; Agarwal R; Singh A; Bhatnagar S J Recept Signal Transduct Res; 2017 Jun; 37(3):239-251. PubMed ID: 27485292 [TBL] [Abstract][Full Text] [Related]
5. Periostin is required for matricellular localization of CCN3 in periodontal ligament of mice. Takayama I; Tanabe H; Nishiyama T; Ito H; Amizuka N; Li M; Katsube KI; Kii I; Kudo A J Cell Commun Signal; 2017 Mar; 11(1):5-13. PubMed ID: 28013443 [TBL] [Abstract][Full Text] [Related]
6. Structural analyses of von Willebrand factor C domains of collagen 2A and CCN3 reveal an alternative mode of binding to bone morphogenetic protein-2. Xu ER; Blythe EE; Fischer G; Hyvönen M J Biol Chem; 2017 Jul; 292(30):12516-12527. PubMed ID: 28584056 [TBL] [Abstract][Full Text] [Related]
7. CCN3 secretion is regulated by palmitoylation via ZDHHC22. Kim Y; Yang H; Min JK; Park YJ; Jeong SH; Jang SW; Shim S Biochem Biophys Res Commun; 2018 Jan; 495(4):2573-2578. PubMed ID: 29287726 [TBL] [Abstract][Full Text] [Related]
8. First structural glimpse of CCN3 and CCN5 multifunctional signaling regulators elucidated by small angle x-ray scattering. Holbourn KP; Malfois M; Acharya KR J Biol Chem; 2011 Jun; 286(25):22243-9. PubMed ID: 21543320 [TBL] [Abstract][Full Text] [Related]
9. Specificities of heparin-binding sites from the amino-terminus and type 1 repeats of thrombospondin-1. Yu H; Tyrrell D; Cashel J; Guo NH; Vogel T; Sipes JM; Lam L; Fillit HM; Hartman J; Mendelovitz S; Panel A; Roberts DD Arch Biochem Biophys; 2000 Feb; 374(1):13-23. PubMed ID: 10640391 [TBL] [Abstract][Full Text] [Related]
10. Beta 1 integrin- and proteoglycan-mediated stimulation of T lymphoma cell adhesion and mitogen-activated protein kinase signaling by thrombospondin-1 and thrombospondin-1 peptides. Wilson KE; Li Z; Kara M; Gardner KL; Roberts DD J Immunol; 1999 Oct; 163(7):3621-8. PubMed ID: 10490955 [TBL] [Abstract][Full Text] [Related]
11. Thrombospondin-1 binds to polyhistidine with high affinity and specificity. Vanguri VK; Wang S; Godyna S; Ranganathan S; Liau G Biochem J; 2000 Apr; 347(Pt 2):469-73. PubMed ID: 10749676 [TBL] [Abstract][Full Text] [Related]
12. The aminoterminal insulin-like growth factor (IGF) binding domain of IGF binding protein-3 cannot be functionally substituted by the structurally homologous domain of CCN3. Yan X; Baxter RC; Perbal B; Firth SM Endocrinology; 2006 Nov; 147(11):5268-74. PubMed ID: 16935848 [TBL] [Abstract][Full Text] [Related]
13. Identification of an alpha(3)beta(1) integrin recognition sequence in thrombospondin-1. Krutzsch HC; Choe BJ; Sipes JM; Guo Nh; Roberts DD J Biol Chem; 1999 Aug; 274(34):24080-6. PubMed ID: 10446179 [TBL] [Abstract][Full Text] [Related]
14. Human babesiosis: Indication of a molecular mimicry between thrombospondin domains from a novel Babesia microti BmP53 protein and host platelets molecules. Mousa AA; Roche DB; Terkawi MA; Kameyama K; Kamyingkird K; Vudriko P; Salama A; Cao S; Orabi S; Khalifa H; Ahmed M; Attia M; Elkirdasy A; Nishikawa Y; Xuan X; Cornillot E PLoS One; 2017; 12(10):e0185372. PubMed ID: 29040286 [TBL] [Abstract][Full Text] [Related]
15. Adenoviral CCN3/NOV gene transfer fails to mitigate liver fibrosis in an experimental bile duct ligation model because of hepatocyte apoptosis. Borkham-Kamphorst E; Huss S; Van de Leur E; Haas U; Weiskirchen R Liver Int; 2012 Oct; 32(9):1342-53. PubMed ID: 22698069 [TBL] [Abstract][Full Text] [Related]
16. Expression and characterization of novel thrombospondin 1 type I repeat fusion proteins. Qabar AN; Bullock J; Matej L; Polverini P Biochem J; 2000 Feb; 346 Pt 1(Pt 1):147-53. PubMed ID: 10657251 [TBL] [Abstract][Full Text] [Related]
17. Residues F16-G33 and A784-N823 within platelet thrombospondin-1 play a major role in binding human neutrophils: evaluation by two novel binding assays. Majluf-Cruz A; Manns JM; Uknis AB; Yang X; Colman RW; Harris RB; Frazier W; Lawler J; DeLa Cadena RA J Lab Clin Med; 2000 Oct; 136(4):292-302. PubMed ID: 11039850 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of the TSP-1 type 1 repeats: a novel layered fold and its biological implication. Tan K; Duquette M; Liu JH; Dong Y; Zhang R; Joachimiak A; Lawler J; Wang JH J Cell Biol; 2002 Oct; 159(2):373-82. PubMed ID: 12391027 [TBL] [Abstract][Full Text] [Related]
19. Physical characterization of the procollagen module of human thrombospondin 1 expressed in insect cells. Misenheimer TM; Huwiler KG; Annis DS; Mosher DF J Biol Chem; 2000 Dec; 275(52):40938-45. PubMed ID: 11016937 [TBL] [Abstract][Full Text] [Related]
20. Structural characterization of the second TSP1-module of human thrombospondin. Roszmusz E; Patthy A; Trexler M; Patthy L Biochem Biophys Res Commun; 2002 Aug; 296(1):156-60. PubMed ID: 12147243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]