These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 32038121)

  • 1. 3D Printed Neural Regeneration Devices.
    Joung D; Lavoie NS; Guo SZ; Park SH; Parr AM; McAlpine MC
    Adv Funct Mater; 2020 Jan; 30(1):. PubMed ID: 32038121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addressing Unmet Clinical Needs with 3D Printing Technologies.
    Ghosh U; Ning S; Wang Y; Kong YL
    Adv Healthc Mater; 2018 Sep; 7(17):e1800417. PubMed ID: 30004185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair.
    Hamid OA; Eltaher HM; Sottile V; Yang J
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111707. PubMed ID: 33545866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds.
    Joung D; Truong V; Neitzke CC; Guo SZ; Walsh PJ; Monat JR; Meng F; Park SH; Dutton JR; Parr AM; McAlpine MC
    Adv Funct Mater; 2018 Sep; 28(39):. PubMed ID: 32595422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Printed Anatomical Nerve Regeneration Pathways.
    Johnson BN; Lancaster KZ; Zhen G; He J; Gupta MK; Kong YL; Engel EA; Krick KD; Ju A; Meng F; Enquist LW; Jia X; McAlpine MC
    Adv Funct Mater; 2015 Oct; 25(39):6205-6217. PubMed ID: 26924958
    [No Abstract]   [Full Text] [Related]  

  • 7. 3D bioprinted neural tissue constructs for spinal cord injury repair.
    Liu X; Hao M; Chen Z; Zhang T; Huang J; Dai J; Zhang Z
    Biomaterials; 2021 May; 272():120771. PubMed ID: 33798962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic 3D-printed scaffolds for spinal cord injury repair.
    Koffler J; Zhu W; Qu X; Platoshyn O; Dulin JN; Brock J; Graham L; Lu P; Sakamoto J; Marsala M; Chen S; Tuszynski MH
    Nat Med; 2019 Feb; 25(2):263-269. PubMed ID: 30643285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Personalized 3D printed bone scaffolds: A review.
    Mirkhalaf M; Men Y; Wang R; No Y; Zreiqat H
    Acta Biomater; 2023 Jan; 156():110-124. PubMed ID: 35429670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Concept of Scaffold-Guided Bone Regeneration for the Treatment of Long Bone Defects: Current Clinical Application and Future Perspective.
    Laubach M; Hildebrand F; Suresh S; Wagels M; Kobbe P; Gilbert F; Kneser U; Holzapfel BM; Hutmacher DW
    J Funct Biomater; 2023 Jun; 14(7):. PubMed ID: 37504836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D bioprinting applications in neural tissue engineering for spinal cord injury repair.
    Bedir T; Ulag S; Ustundag CB; Gunduz O
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110741. PubMed ID: 32204049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Engineered Peripheral Nerve: Toward a New Era of Patient-Specific Nerve Repair Solutions.
    Selim OA; Lakhani S; Midha S; Mosahebi A; Kalaskar DM
    Tissue Eng Part B Rev; 2022 Apr; 28(2):295-335. PubMed ID: 33593147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in the Design of Three-Dimensional and Bioprinted Scaffolds for Full-Thickness Wound Healing.
    Tan SH; Ngo ZH; Sci DB; Leavesley D; Liang K
    Tissue Eng Part B Rev; 2022 Feb; 28(1):160-181. PubMed ID: 33446047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printed Bionic Nanodevices.
    Kong YL; Gupta MK; Johnson BN; McAlpine MC
    Nano Today; 2016 Jun; 11(3):330-350. PubMed ID: 27617026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meniscus regeneration by 3D printing technologies: Current advances and future perspectives.
    Stocco E; Porzionato A; De Rose E; Barbon S; De Caro R; Macchi V
    J Tissue Eng; 2022; 13():20417314211065860. PubMed ID: 35096363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printed microfluidics: advances in strategies, integration, and applications.
    Su R; Wang F; McAlpine MC
    Lab Chip; 2023 Mar; 23(5):1279-1299. PubMed ID: 36779387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Dimensional Printing for Bone Tissue Engineering.
    Qu M; Wang C; Zhou X; Libanori A; Jiang X; Xu W; Zhu S; Chen Q; Sun W; Khademhosseini A
    Adv Healthc Mater; 2021 Jun; 10(11):e2001986. PubMed ID: 33876580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current status of three-dimensional printing inks for soft tissue regeneration.
    Kim JE; Kim SH; Jung Y
    Tissue Eng Regen Med; 2016 Dec; 13(6):636-646. PubMed ID: 30603445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.