These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 32038121)

  • 21. Development and Application of Three-Dimensional Bioprinting Scaffold in the Repair of Spinal Cord Injury.
    Lu D; Yang Y; Zhang P; Ma Z; Li W; Song Y; Feng H; Yu W; Ren F; Li T; Zeng H; Wang J
    Tissue Eng Regen Med; 2022 Dec; 19(6):1113-1127. PubMed ID: 35767151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration.
    Soleymani S; Naghib SM
    Heliyon; 2023 Sep; 9(9):e19363. PubMed ID: 37662765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D-printed patient-specific applications in orthopedics.
    Wong KC
    Orthop Res Rev; 2016; 8():57-66. PubMed ID: 30774470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D-printed Bioreactors for
    Priyadarshini BM; Dikshit V; Zhang Y
    Int J Bioprint; 2020; 6(4):267. PubMed ID: 33088992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration.
    Metz C; Duda GN; Checa S
    Acta Biomater; 2020 Jan; 101():117-127. PubMed ID: 31669697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advancements in Research on Constructing Physiological and Pathological Liver Models and Their Applications Utilizing Bioprinting Technology.
    Ming Z; Tang X; Liu J; Ruan B
    Molecules; 2023 Apr; 28(9):. PubMed ID: 37175094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Bioprinting for Spinal Cord Injury Repair.
    Yuan TY; Zhang J; Yu T; Wu JP; Liu QY
    Front Bioeng Biotechnol; 2022; 10():847344. PubMed ID: 35519617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osteoregenerative Potential of 3D-Printed Poly
    Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional printing of smart constructs using stimuli-responsive biomaterials: A future direction of precision medicine.
    Gao Q; Lee JS; Kim BS; Gao G
    Int J Bioprint; 2023; 9(1):638. PubMed ID: 36636137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices.
    Hales S; Tokita E; Neupane R; Ghosh U; Elder B; Wirthlin D; Kong YL
    Nanotechnology; 2020 Apr; 31(17):172001. PubMed ID: 31805540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in 3D printing techniques for cartilage regeneration of temporomandibular joint disc and mandibular condyle.
    Hu S; Yi Y; Ye C; Liu J; Wang J
    Int J Bioprint; 2023; 9(5):761. PubMed ID: 37457936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printed nervous system on a chip.
    Johnson BN; Lancaster KZ; Hogue IB; Meng F; Kong YL; Enquist LW; McAlpine MC
    Lab Chip; 2016 Apr; 16(8):1393-400. PubMed ID: 26669842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High throughput direct 3D bioprinting in multiwell plates.
    Hwang HH; You S; Ma X; Kwe L; Victorine G; Lawrence N; Wan X; Shen H; Zhu W; Chen S
    Biofabrication; 2021 Mar; 13(2):. PubMed ID: 32299077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spinal Cord Injury Management through the Combination of Stem Cells and Implantable 3D Bioprinted Platforms.
    Zarepour A; Hooshmand S; Gökmen A; Zarrabi A; Mostafavi E
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Effect of Polymeric Nanofibers Used for 3D-Printed Scaffolds on Cellular Activity in Tissue Engineering: A Review.
    Kharaghani D; Kaffashsaei E; Haider MK; Kim IS
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-cost sensor-integrated 3D-printed personalized prosthetic hands for children with amniotic band syndrome: A case study in sensing pressure distribution on an anatomical human-machine interface (AHMI) using 3D-printed conformal electrode arrays.
    Tong Y; Kucukdeger E; Halper J; Cesewski E; Karakozoff E; Haring AP; McIlvain D; Singh M; Khandelwal N; Meholic A; Laheri S; Sharma A; Johnson BN
    PLoS One; 2019; 14(3):e0214120. PubMed ID: 30921360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in bioinks and in vivo imaging of biomaterials for CNS applications.
    Oliveira EP; Malysz-Cymborska I; Golubczyk D; Kalkowski L; Kwiatkowska J; Reis RL; Oliveira JM; Walczak P
    Acta Biomater; 2019 Sep; 95():60-72. PubMed ID: 31075514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-resolution 3D printing of angle-ply annulus fibrosus scaffolds for intervertebral disc regeneration.
    Liu Z; Wang H; Yuan Z; Wei Q; Han F; Chen S; Xu H; Li J; Wang J; Li Z; Chen Q; Fuh J; Ding L; Wang H; Li B
    Biofabrication; 2022 Dec; 15(1):. PubMed ID: 36541475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.