These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32038123)

  • 1. Seeing Gravity: Gait Adaptations to Visual and Physical Inclines - A Virtual Reality Study.
    Cano Porras D; Zeilig G; Doniger GM; Bahat Y; Inzelberg R; Plotnik M
    Front Neurosci; 2019; 13():1308. PubMed ID: 32038123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait Speed Modulations Are Proportional to Grades of Virtual Visual Slopes-A Virtual Reality Study.
    Benady A; Zadik S; Zeilig G; Gilaie-Dotan S; Plotnik M
    Front Neurol; 2021; 12():615242. PubMed ID: 34512493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vision Affects Gait Speed but not Patterns of Muscle Activation During Inclined Walking-A Virtual Reality Study.
    Benady A; Zadik S; Ben-Gal O; Cano Porras D; Wenkert A; Gilaie-Dotan S; Plotnik M
    Front Bioeng Biotechnol; 2021; 9():632594. PubMed ID: 33898402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How about running on Mars? Influence of sensorimotor coherence on running and spatial perception in simulated reduced gravity.
    Keime M; Chomienne L; Goulon C; Sainton P; Lapole T; Casanova R; Bossard M; Nicol C; Martha C; Bolmont B; Hays A; Vercruyssen F; Chavet P; Bringoux L
    Front Physiol; 2023; 14():1201253. PubMed ID: 37601641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multisensory cues for walking in virtual reality: humans combine conflicting visual and self-motion information to reproduce distances.
    Kopiske K; Heinrich EM; Jahn G; Bendixen A; Einhäuser W
    J Neurophysiol; 2023 Oct; 130(4):1028-1040. PubMed ID: 37701952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visuomotor Interactions and Perceptual Judgments in Virtual Reality Simulating Different Levels of Gravity.
    La Scaleia B; Ceccarelli F; Lacquaniti F; Zago M
    Front Bioeng Biotechnol; 2020; 8():76. PubMed ID: 32133351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of visual cues in gravity judgements on parabolic motion.
    Jörges B; Hagenfeld L; López-Moliner J
    Vision Res; 2018 Aug; 149():47-58. PubMed ID: 29913247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual gravity contributes to subjective first-person perspective.
    Pfeiffer C; Grivaz P; Herbelin B; Serino A; Blanke O
    Neurosci Conscious; 2016; 2016(1):niw006. PubMed ID: 30109127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory conflict alters visual perception of action capabilities during crossing of a closing gap in virtual reality.
    Snyder N; Cinelli M
    Q J Exp Psychol (Hove); 2020 Dec; 73(12):2309-2316. PubMed ID: 32640870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring egocentric distance perception in virtual reality: Influence of methodologies, locomotion and translation gains.
    Maruhn P; Schneider S; Bengler K
    PLoS One; 2019; 14(10):e0224651. PubMed ID: 31671138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait adaptations during overground walking and multidirectional oscillations of the visual field in a virtual reality headset.
    Martelli D; Xia B; Prado A; Agrawal SK
    Gait Posture; 2019 Jan; 67():251-256. PubMed ID: 30388606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual capture of gait during redirected walking.
    Rothacher Y; Nguyen A; Lenggenhager B; Kunz A; Brugger P
    Sci Rep; 2018 Dec; 8(1):17974. PubMed ID: 30568182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of gravity on human walking: a new test of the dynamic similarity hypothesis using a predictive model.
    Raichlen DA
    J Exp Biol; 2008 Sep; 211(Pt 17):2767-72. PubMed ID: 18723533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural processing of gravito-inertial cues in humans. IV. Influence of visual rotational cues during roll optokinetic stimuli.
    Zupan LH; Merfeld DM
    J Neurophysiol; 2003 Jan; 89(1):390-400. PubMed ID: 12522188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Getting ready for Mars: How the brain perceives new simulated gravitational environments.
    Torok A; Gallagher M; Lasbareilles C; Ferrè ER
    Q J Exp Psychol (Hove); 2019 Sep; 72(9):2342-2349. PubMed ID: 30852941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual signals of head rotation induce gravity-dependent inferences of linear acceleration.
    Khosravi-Hashemi N; Forbes PA; Dakin CJ; Blouin JS
    J Physiol; 2019 Nov; 597(21):5231-5246. PubMed ID: 31483492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self Beyond the Body: Action-Driven and Task-Relevant Purely Distal Cues Modulate Performance and Body Ownership.
    Grechuta K; Ulysse L; Rubio Ballester B; Verschure PFMJ
    Front Hum Neurosci; 2019; 13():91. PubMed ID: 30949038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gravity as a Strong Prior: Implications for Perception and Action.
    Jörges B; López-Moliner J
    Front Hum Neurosci; 2017; 11():203. PubMed ID: 28503140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal Dynamics of Visually Induced Motion Perception and Neural Evidence of Alterations in the Motion Perception Process in an Immersive Virtual Reality Environment.
    Ahn MH; Park JH; Jeon H; Lee HJ; Kim HJ; Hong SK
    Front Neurosci; 2020; 14():600839. PubMed ID: 33328873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?
    Riecke BE; Freiberg JB; Grechkin TY
    J Vis; 2015 Feb; 15(2):. PubMed ID: 25761342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.