These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 32038131)
1. A New Model of Repetitive Traumatic Brain Injury in Mice. Chen K; Gu H; Zhu L; Feng DF Front Neurosci; 2019; 13():1417. PubMed ID: 32038131 [TBL] [Abstract][Full Text] [Related]
2. How repetitive traumatic injury alters long-term brain function. Dhillon NK; Linaval NT; O'Rourke J; Barmparas G; Yang A; Cho N; Shelest O; Ley EJ J Trauma Acute Care Surg; 2020 Nov; 89(5):955-961. PubMed ID: 32472900 [TBL] [Abstract][Full Text] [Related]
4. Differential association of baseline body weight and body-weight loss with neurological deficits, histology, and death after repetitive closed head traumatic brain injury. Kahriman A; Bouley J; Bosco DA; Shazeeb MS; Henninger N Neurosci Lett; 2022 Feb; 771():136430. PubMed ID: 34973374 [TBL] [Abstract][Full Text] [Related]
5. Repetitive closed-head impact model of engineered rotational acceleration (CHIMERA) injury in rats increases impulsivity, decreases dopaminergic innervation in the olfactory tubercle and generates white matter inflammation, tau phosphorylation and degeneration. Vonder Haar C; Martens KM; Bashir A; McInnes KA; Cheng WH; Cheung H; Stukas S; Barron C; Ladner T; Welch KA; Cripton PA; Winstanley CA; Wellington CL Exp Neurol; 2019 Jul; 317():87-99. PubMed ID: 30822421 [TBL] [Abstract][Full Text] [Related]
6. Merging pathology with biomechanics using CHIMERA (Closed-Head Impact Model of Engineered Rotational Acceleration): a novel, surgery-free model of traumatic brain injury. Namjoshi DR; Cheng WH; McInnes KA; Martens KM; Carr M; Wilkinson A; Fan J; Robert J; Hayat A; Cripton PA; Wellington CL Mol Neurodegener; 2014 Dec; 9():55. PubMed ID: 25443413 [TBL] [Abstract][Full Text] [Related]
7. Genetic ablation of Sarm1 attenuates expression and mislocalization of phosphorylated TDP-43 after mouse repetitive traumatic brain injury. Dogan EO; Bouley J; Zhong J; Harkins AL; Keeler AM; Bosco DA; Brown RH; Henninger N Acta Neuropathol Commun; 2023 Dec; 11(1):206. PubMed ID: 38124145 [TBL] [Abstract][Full Text] [Related]
8. CCL20-CCR6 axis modulated traumatic brain injury-induced visual pathologies. Das M; Tang X; Han JY; Mayilsamy K; Foran E; Biswal MR; Tzekov R; Mohapatra SS; Mohapatra S J Neuroinflammation; 2019 May; 16(1):115. PubMed ID: 31151410 [TBL] [Abstract][Full Text] [Related]
9. Diffuse axonal injury induced by simultaneous moderate linear and angular head accelerations in rats. Li XY; Li J; Feng DF; Gu L Neuroscience; 2010 Aug; 169(1):357-69. PubMed ID: 20451584 [TBL] [Abstract][Full Text] [Related]
10. Repetitive mild traumatic brain injury in a mouse model produces learning and memory deficits accompanied by histological changes. Mouzon B; Chaytow H; Crynen G; Bachmeier C; Stewart J; Mullan M; Stewart W; Crawford F J Neurotrauma; 2012 Dec; 29(18):2761-73. PubMed ID: 22900595 [TBL] [Abstract][Full Text] [Related]
11. Mesenchymal stem cells reduce long-term cognitive deficits and attenuate myelin disintegration and microglia activation following repetitive traumatic brain injury. Wang LW; Chio CC; Chao CM; Chao PY; Lin MT; Chang CP; Lin HJ Sci Prog; 2024; 107(1):368504241231154. PubMed ID: 38425276 [TBL] [Abstract][Full Text] [Related]
12. Repeat traumatic brain injury in the juvenile rat is associated with increased axonal injury and cognitive impairments. Prins ML; Hales A; Reger M; Giza CC; Hovda DA Dev Neurosci; 2010; 32(5-6):510-8. PubMed ID: 20829578 [TBL] [Abstract][Full Text] [Related]
13. Multispectral optoacoustic tomography (MSOT): Monitoring neurovascular changes in a mouse repetitive traumatic brain injury model. Penn C; Katnik C; Cuevas J; Mohapatra SS; Mohapatra S J Neurosci Methods; 2023 Jun; 393():109876. PubMed ID: 37150303 [TBL] [Abstract][Full Text] [Related]
14. The role of tumor necrosis factor-alpha in diffuse axonal injury following fluid-percussive brain injury in rats. Kita T; Tanaka T; Tanaka N; Kinoshita Y Int J Legal Med; 2000; 113(4):221-8. PubMed ID: 10929238 [TBL] [Abstract][Full Text] [Related]
15. Recovery From Repeat Mild Traumatic Brain Injury in Adolescent Rats Is Dependent on Pre-injury Activity State. Ferguson L; Giza CC; Serpa RO; Greco T; Folkerts M; Prins ML Front Neurol; 2020; 11():616661. PubMed ID: 33488505 [TBL] [Abstract][Full Text] [Related]
16. Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Mac Donald CL; Dikranian K; Song SK; Bayly PV; Holtzman DM; Brody DL Exp Neurol; 2007 May; 205(1):116-31. PubMed ID: 17368446 [TBL] [Abstract][Full Text] [Related]
17. Post-traumatic hypoxia exacerbates brain tissue damage: analysis of axonal injury and glial responses. Hellewell SC; Yan EB; Agyapomaa DA; Bye N; Morganti-Kossmann MC J Neurotrauma; 2010 Nov; 27(11):1997-2010. PubMed ID: 20822466 [TBL] [Abstract][Full Text] [Related]
18. Diffuse traumatic axonal injury in mice induces complex behavioural alterations that are normalized by neutralization of interleukin-1β. Ekmark-Lewén S; Flygt J; Fridgeirsdottir GA; Kiwanuka O; Hånell A; Meyerson BJ; Mir AK; Gram H; Lewén A; Clausen F; Hillered L; Marklund N Eur J Neurosci; 2016 Apr; 43(8):1016-33. PubMed ID: 27091435 [TBL] [Abstract][Full Text] [Related]
19. Experimental Traumatic Brain Injury Identifies Distinct Early and Late Phase Axonal Conduction Deficits of White Matter Pathophysiology, and Reveals Intervening Recovery. Marion CM; Radomski KL; Cramer NP; Galdzicki Z; Armstrong RC J Neurosci; 2018 Oct; 38(41):8723-8736. PubMed ID: 30143572 [TBL] [Abstract][Full Text] [Related]
20. Hypoxic-ischemic injury results in acute disruption of myelin gene expression and death of oligodendroglial precursors in neonatal mice. Skoff RP; Bessert DA; Barks JD; Song D; Cerghet M; Silverstein FS Int J Dev Neurosci; 2001 Apr; 19(2):197-208. PubMed ID: 11255033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]