These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32038132)

  • 1. An Efficient and Perceptually Motivated Auditory Neural Encoding and Decoding Algorithm for Spiking Neural Networks.
    Pan Z; Chua Y; Wu J; Zhang M; Li H; Ambikairajah E
    Front Neurosci; 2019; 13():1420. PubMed ID: 32038132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsupervised speech recognition through spike-timing-dependent plasticity in a convolutional spiking neural network.
    Dong M; Huang X; Xu B
    PLoS One; 2018; 13(11):e0204596. PubMed ID: 30496179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory perception architecture with spiking neural network and implementation on FPGA.
    Deng B; Fan Y; Wang J; Yang S
    Neural Netw; 2023 Aug; 165():31-42. PubMed ID: 37276809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of encoding-decoding schemes and weight normalization in spiking neural networks.
    Liang Z; Schwartz D; Ditzler G; Koyluoglu OO
    Neural Netw; 2018 Dec; 108():365-378. PubMed ID: 30261415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supervised Learning With First-to-Spike Decoding in Multilayer Spiking Neural Networks.
    Gardner B; Grüning A
    Front Comput Neurosci; 2021; 15():617862. PubMed ID: 33912021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiking neural networks for cortical neuronal spike train decoding.
    Fang H; Wang Y; He J
    Neural Comput; 2010 Apr; 22(4):1060-85. PubMed ID: 19922291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise-robust speech recognition through auditory feature detection and spike sequence decoding.
    Schafer PB; Jin DZ
    Neural Comput; 2014 Mar; 26(3):523-56. PubMed ID: 24320849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural Segregation of Concurrent Speech: Effects of Background Noise and Reverberation on Auditory Scene Analysis in the Ventral Cochlear Nucleus.
    Sayles M; Stasiak A; Winter IM
    Adv Exp Med Biol; 2016; 894():389-397. PubMed ID: 27080680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcortical neural coding mechanisms for auditory temporal processing.
    Frisina RD
    Hear Res; 2001 Aug; 158(1-2):1-27. PubMed ID: 11506933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks.
    Yu C; Du Y; Chen M; Wang A; Wang G; Li E
    Front Neurosci; 2022; 16():945037. PubMed ID: 36203801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VTSNN: a virtual temporal spiking neural network.
    Qiu XR; Wang ZR; Luan Z; Zhu RJ; Wu X; Zhang ML; Deng LJ
    Front Neurosci; 2023; 17():1091097. PubMed ID: 37287800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking Spike-Based Visual Recognition: A Dataset and Evaluation.
    Liu Q; Pineda-García G; Stromatias E; Serrano-Gotarredona T; Furber SB
    Front Neurosci; 2016; 10():496. PubMed ID: 27853419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Spiking Neural Network Framework for Robust Sound Classification.
    Wu J; Chua Y; Zhang M; Li H; Tan KC
    Front Neurosci; 2018; 12():836. PubMed ID: 30510500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding speech from spike-based neural population recordings in secondary auditory cortex of non-human primates.
    Heelan C; Lee J; O'Shea R; Lynch L; Brandman DM; Truccolo W; Nurmikko AV
    Commun Biol; 2019; 2():466. PubMed ID: 31840111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards biological plausibility of electronic noses: A spiking neural network based approach for tea odour classification.
    Sarkar ST; Bhondekar AP; Macaš M; Kumar R; Kaur R; Sharma A; Gulati A; Kumar A
    Neural Netw; 2015 Nov; 71():142-9. PubMed ID: 26356597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backpropagation with biologically plausible spatiotemporal adjustment for training deep spiking neural networks.
    Shen G; Zhao D; Zeng Y
    Patterns (N Y); 2022 Jun; 3(6):100522. PubMed ID: 35755868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a Low-Power Spiking Continuous Time Neuron (SCTN) for Sound Signal Processing.
    Bensimon M; Greenberg S; Haiut M
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust and biologically plausible spike pattern recognition network.
    Larson E; Perrone BP; Sen K; Billimoria CP
    J Neurosci; 2010 Nov; 30(46):15566-72. PubMed ID: 21084611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of learning in biologically plausible spiking neural networks.
    Taherkhani A; Belatreche A; Li Y; Cosma G; Maguire LP; McGinnity TM
    Neural Netw; 2020 Feb; 122():253-272. PubMed ID: 31726331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal-Plasticity and Reward-Propagation Improved Recurrent Spiking Neural Networks.
    Jia S; Zhang T; Cheng X; Liu H; Xu B
    Front Neurosci; 2021; 15():654786. PubMed ID: 33776644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.