These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 32038208)

  • 21. Deep Learning Based Inter-subject Continuous Decoding of Motor Imagery for Practical Brain-Computer Interfaces.
    Roy S; Chowdhury A; McCreadie K; Prasad G
    Front Neurosci; 2020; 14():918. PubMed ID: 33100953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective Cross-Subject Transfer Learning Based on Riemannian Tangent Space for Motor Imagery Brain-Computer Interface.
    Xu Y; Huang X; Lan Q
    Front Neurosci; 2021; 15():779231. PubMed ID: 34803600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective Subject Pooling Strategy to Improve Model Generalization for a Motor Imagery BCI.
    Won K; Kwon M; Ahn M; Jun SC
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI.
    Fahimi F; Zhang Z; Goh WB; Lee TS; Ang KK; Guan C
    J Neural Eng; 2019 Apr; 16(2):026007. PubMed ID: 30524056
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of Transfer Learning in EEG Decoding Based on Brain-Computer Interfaces: A Review.
    Zhang K; Xu G; Zheng X; Li H; Zhang S; Yu Y; Liang R
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Learning a common dictionary for subject-transfer decoding with resting calibration.
    Morioka H; Kanemura A; Hirayama J; Shikauchi M; Ogawa T; Ikeda S; Kawanabe M; Ishii S
    Neuroimage; 2015 May; 111():167-78. PubMed ID: 25682943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Omitting the intra-session calibration in EEG-based brain computer interface used for stroke rehabilitation.
    Arvaneh M; Guan C; Ang KK; Quek C
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4124-7. PubMed ID: 23366835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EEG-Based Brain-Computer Interfaces for Communication and Rehabilitation of People with Motor Impairment:
    Lazarou I; Nikolopoulos S; Petrantonakis PC; Kompatsiaris I; Tsolaki M
    Front Hum Neurosci; 2018; 12():14. PubMed ID: 29472849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
    Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Psychological predictors of SMR-BCI performance.
    Hammer EM; Halder S; Blankertz B; Sannelli C; Dickhaus T; Kleih S; Müller KR; Kübler A
    Biol Psychol; 2012 Jan; 89(1):80-6. PubMed ID: 21964375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of multimodal and enriched feedback on SMR-BCI performance.
    Sollfrank T; Ramsay A; Perdikis S; Williamson J; Murray-Smith R; Leeb R; Millán JDR; Kübler A
    Clin Neurophysiol; 2016 Jan; 127(1):490-498. PubMed ID: 26138148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neurophysiological predictor of SMR-based BCI performance.
    Blankertz B; Sannelli C; Halder S; Hammer EM; Kübler A; Müller KR; Curio G; Dickhaus T
    Neuroimage; 2010 Jul; 51(4):1303-9. PubMed ID: 20303409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensorimotor modulation assessment and brain-computer interface training in disorders of consciousness.
    Coyle D; Stow J; McCreadie K; McElligott J; Carroll Á
    Arch Phys Med Rehabil; 2015 Mar; 96(3 Suppl):S62-70. PubMed ID: 25721549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An inter-subject model to reduce the calibration time for motion imagination-based brain-computer interface.
    Zou Y; Zhao X; Chu Y; Zhao Y; Xu W; Han J
    Med Biol Eng Comput; 2019 Apr; 57(4):939-952. PubMed ID: 30498878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tangent space alignment: Transfer learning for Brain-Computer Interface.
    Bleuzé A; Mattout J; Congedo M
    Front Hum Neurosci; 2022; 16():1049985. PubMed ID: 36530202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transfer Learning: A Riemannian Geometry Framework With Applications to Brain-Computer Interfaces.
    Zanini P; Congedo M; Jutten C; Said S; Berthoumieu Y
    IEEE Trans Biomed Eng; 2018 May; 65(5):1107-1116. PubMed ID: 28841546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subject-to-subject adaptation to reduce calibration time in motor imagery-based brain-computer interface.
    Arvaneh M; Robertson I; Ward TE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6501-4. PubMed ID: 25571485
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A subject-independent brain-computer interface based on smoothed, second-order baselining.
    Reuderink B; Farquhar J; Poel M; Nijholt A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4600-4. PubMed ID: 22255362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Is motor-imagery brain-computer interface feasible in stroke rehabilitation?
    Teo WP; Chew E
    PM R; 2014 Aug; 6(8):723-8. PubMed ID: 24429072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.