These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 32038537)
1. CRISPR-Cas Systems and the Paradox of Self-Targeting Spacers. Wimmer F; Beisel CL Front Microbiol; 2019; 10():3078. PubMed ID: 32038537 [TBL] [Abstract][Full Text] [Related]
2. Friendly Fire: Biological Functions and Consequences of Chromosomal Targeting by CRISPR-Cas Systems. Heussler GE; O'Toole GA J Bacteriol; 2016 May; 198(10):1481-6. PubMed ID: 26929301 [TBL] [Abstract][Full Text] [Related]
3. Bioinformatics Identification of Anti-CRISPR Loci by Using Homology, Guilt-by-Association, and CRISPR Self-Targeting Spacer Approaches. Yin Y; Yang B; Entwistle S mSystems; 2019 Sep; 4(5):. PubMed ID: 31506266 [TBL] [Abstract][Full Text] [Related]
4. The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes. Shmakov SA; Sitnik V; Makarova KS; Wolf YI; Severinov KV; Koonin EV mBio; 2017 Sep; 8(5):. PubMed ID: 28928211 [TBL] [Abstract][Full Text] [Related]
5. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires. Silas S; Makarova KS; Shmakov S; Páez-Espino D; Mohr G; Liu Y; Davison M; Roux S; Krishnamurthy SR; Fu BXH; Hansen LL; Wang D; Sullivan MB; Millard A; Clokie MR; Bhaya D; Lambowitz AM; Kyrpides NC; Koonin EV; Fire AZ mBio; 2017 Jul; 8(4):. PubMed ID: 28698278 [TBL] [Abstract][Full Text] [Related]
7. Self-targeting spacers in CRISPR-array: Accidental occurrence or evolutionarily conserved phenomenon. Devi V; Harjai K; Chhibber S J Basic Microbiol; 2022 Jan; 62(1):4-12. PubMed ID: 34904260 [TBL] [Abstract][Full Text] [Related]
8. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity. Maniv I; Jiang W; Bikard D; Marraffini LA J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632 [TBL] [Abstract][Full Text] [Related]
9. Bioinformatic evidence of widespread priming in type I and II CRISPR-Cas systems. Nicholson TJ; Jackson SA; Croft BI; Staals RHJ; Fineran PC; Brown CM RNA Biol; 2019 Apr; 16(4):566-576. PubMed ID: 30157725 [TBL] [Abstract][Full Text] [Related]
10. Avoidance of Trinucleotide Corresponding to Consensus Protospacer Adjacent Motif Controls the Efficiency of Prespacer Selection during Primed Adaptation. Musharova O; Vyhovskyi D; Medvedeva S; Guzina J; Zhitnyuk Y; Djordjevic M; Severinov K; Savitskaya E mBio; 2018 Dec; 9(6):. PubMed ID: 30514784 [TBL] [Abstract][Full Text] [Related]
11. CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers. Pourcel C; Touchon M; Villeriot N; Vernadet JP; Couvin D; Toffano-Nioche C; Vergnaud G Nucleic Acids Res; 2020 Jan; 48(D1):D535-D544. PubMed ID: 31624845 [TBL] [Abstract][Full Text] [Related]
12. Type I-F CRISPR-Cas Distribution and Array Dynamics in Deecker SR; Ensminger AW G3 (Bethesda); 2020 Mar; 10(3):1039-1050. PubMed ID: 31937548 [TBL] [Abstract][Full Text] [Related]
14. Natural diversity of CRISPR spacers of Thermus: evidence of local spacer acquisition and global spacer exchange. Lopatina A; Medvedeva S; Artamonova D; Kolesnik M; Sitnik V; Ispolatov Y; Severinov K Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180092. PubMed ID: 30905291 [TBL] [Abstract][Full Text] [Related]
15. Alternative functions of CRISPR-Cas systems in the evolutionary arms race. Mohanraju P; Saha C; van Baarlen P; Louwen R; Staals RHJ; van der Oost J Nat Rev Microbiol; 2022 Jun; 20(6):351-364. PubMed ID: 34992260 [TBL] [Abstract][Full Text] [Related]
16. Comparative analysis of CRISPR-Cas systems in Klebsiella genomes. Shen J; Lv L; Wang X; Xiu Z; Chen G J Basic Microbiol; 2017 Apr; 57(4):325-336. PubMed ID: 28156004 [TBL] [Abstract][Full Text] [Related]