These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 32038664)
1. Regulation of γδ T Cell Effector Diversification in the Thymus. Parker ME; Ciofani M Front Immunol; 2020; 11():42. PubMed ID: 32038664 [TBL] [Abstract][Full Text] [Related]
2. γδ T cells acquire effector fates in the thymus and differentiate into cytokine-producing effectors in a Listeria model of infection independently of CD28 costimulation. Laird RM; Wolf BJ; Princiotta MF; Hayes SM PLoS One; 2013; 8(5):e63178. PubMed ID: 23671671 [TBL] [Abstract][Full Text] [Related]
3. Thymic Determinants of γδ T Cell Differentiation. Muñoz-Ruiz M; Sumaria N; Pennington DJ; Silva-Santos B Trends Immunol; 2017 May; 38(5):336-344. PubMed ID: 28285814 [TBL] [Abstract][Full Text] [Related]
4. Specific Notch receptor-ligand interactions control human TCR-αβ/γδ development by inducing differential Notch signal strength. Van de Walle I; Waegemans E; De Medts J; De Smet G; De Smedt M; Snauwaert S; Vandekerckhove B; Kerre T; Leclercq G; Plum J; Gridley T; Wang T; Koch U; Radtke F; Taghon T J Exp Med; 2013 Apr; 210(4):683-97. PubMed ID: 23530123 [TBL] [Abstract][Full Text] [Related]
5. Intrathymic programming of effector fates in three molecularly distinct γδ T cell subtypes. Narayan K; Sylvia KE; Malhotra N; Yin CC; Martens G; Vallerskog T; Kornfeld H; Xiong N; Cohen NR; Brenner MB; Berg LJ; Kang J; Nat Immunol; 2012 Apr; 13(5):511-8. PubMed ID: 22473038 [TBL] [Abstract][Full Text] [Related]
6. Human alpha beta and gamma delta thymocyte development: TCR gene rearrangements, intracellular TCR beta expression, and gamma delta developmental potential--differences between men and mice. Joachims ML; Chain JL; Hooker SW; Knott-Craig CJ; Thompson LF J Immunol; 2006 Feb; 176(3):1543-52. PubMed ID: 16424183 [TBL] [Abstract][Full Text] [Related]
7. Lineage divergence at the first TCR-dependent checkpoint: preferential γδ and impaired αβ T cell development in nonobese diabetic mice. Feng N; Vegh P; Rothenberg EV; Yui MA J Immunol; 2011 Jan; 186(2):826-37. PubMed ID: 21148803 [TBL] [Abstract][Full Text] [Related]
8. CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells. Haas JD; González FH; Schmitz S; Chennupati V; Föhse L; Kremmer E; Förster R; Prinz I Eur J Immunol; 2009 Dec; 39(12):3488-97. PubMed ID: 19830744 [TBL] [Abstract][Full Text] [Related]
9. Decision checkpoints in the thymus. Carpenter AC; Bosselut R Nat Immunol; 2010 Aug; 11(8):666-73. PubMed ID: 20644572 [TBL] [Abstract][Full Text] [Related]
10. Ligand recognition during thymic development and gammadelta T cell function specification. Meyer C; Zeng X; Chien YH Semin Immunol; 2010 Aug; 22(4):207-13. PubMed ID: 20430644 [TBL] [Abstract][Full Text] [Related]
11. A comparative view on vitamin C effects on αβ- versus γδ T-cell activation and differentiation. Peters C; Kouakanou L; Kabelitz D J Leukoc Biol; 2020 Jun; 107(6):1009-1022. PubMed ID: 32034803 [TBL] [Abstract][Full Text] [Related]
12. Thymic maturation determines gammadelta T cell function, but not their antigen specificities. Jensen KD; Chien YH Curr Opin Immunol; 2009 Apr; 21(2):140-5. PubMed ID: 19321327 [TBL] [Abstract][Full Text] [Related]
13. Molecular mechanisms that control mouse and human TCR-alphabeta and TCR-gammadelta T cell development. Taghon T; Rothenberg EV Semin Immunopathol; 2008 Dec; 30(4):383-98. PubMed ID: 18925397 [TBL] [Abstract][Full Text] [Related]
14. Porcine γδ T lymphocytes can be categorized into two functionally and developmentally distinct subsets according to expression of CD2 and level of TCR. Stepanova K; Sinkora M J Immunol; 2013 Mar; 190(5):2111-20. PubMed ID: 23359501 [TBL] [Abstract][Full Text] [Related]
15. Integrated morphogen signal inputs in gammadelta versus alphabeta T-cell differentiation. Melichar H; Kang J Immunol Rev; 2007 Feb; 215():32-45. PubMed ID: 17291277 [TBL] [Abstract][Full Text] [Related]
16. Marked induction of the helix-loop-helix protein Id3 promotes the gammadelta T cell fate and renders their functional maturation Notch independent. Lauritsen JP; Wong GW; Lee SY; Lefebvre JM; Ciofani M; Rhodes M; Kappes DJ; Zúñiga-Pflücker JC; Wiest DL Immunity; 2009 Oct; 31(4):565-75. PubMed ID: 19833086 [TBL] [Abstract][Full Text] [Related]
17. Evidence for the divergence of innate and adaptive T-cell precursors before commitment to the αβ and γδ lineages. Kisielow J; Tortola L; Weber J; Karjalainen K; Kopf M Blood; 2011 Dec; 118(25):6591-600. PubMed ID: 22021367 [TBL] [Abstract][Full Text] [Related]
18. αβ and γδ T cell receptors: Similar but different. Morath A; Schamel WW J Leukoc Biol; 2020 Jun; 107(6):1045-1055. PubMed ID: 31994778 [TBL] [Abstract][Full Text] [Related]
19. γδTCR-independent origin of neonatal γδ T cells prewired for IL-17 production. Spidale NA; Frascoli M; Kang J Curr Opin Immunol; 2019 Jun; 58():60-67. PubMed ID: 31128446 [TBL] [Abstract][Full Text] [Related]
20. TCR-mediated ThPOK induction promotes development of mature (CD24-) gammadelta thymocytes. Park K; He X; Lee HO; Hua X; Li Y; Wiest D; Kappes DJ EMBO J; 2010 Jul; 29(14):2329-41. PubMed ID: 20551904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]