These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
507 related articles for article (PubMed ID: 32038676)
1. Transpiration Reduction in Maize ( Hayat F; Ahmed MA; Zarebanadkouki M; Javaux M; Cai G; Carminati A Front Plant Sci; 2019; 10():1695. PubMed ID: 32038676 [TBL] [Abstract][Full Text] [Related]
2. Above and belowground traits impacting transpiration decline during soil drying in 48 maize (Zea mays) genotypes. Koehler T; Schaum C; Tung SY; Steiner F; Tyborski N; Wild AJ; Akale A; Pausch J; Lueders T; Wolfrum S; Mueller CW; Vidal A; Vahl WK; Groth J; Eder B; Ahmed MA; Carminati A Ann Bot; 2023 Mar; 131(2):373-386. PubMed ID: 36479887 [TBL] [Abstract][Full Text] [Related]
3. Stomatal closure during water deficit is controlled by below-ground hydraulics. Abdalla M; Ahmed MA; Cai G; Wankmüller F; Schwartz N; Litig O; Javaux M; Carminati A Ann Bot; 2022 Jan; 129(2):161-170. PubMed ID: 34871349 [TBL] [Abstract][Full Text] [Related]
4. Stomatal conductance tracks soil-to-leaf hydraulic conductance in faba bean and maize during soil drying. Müllers Y; Postma JA; Poorter H; van Dusschoten D Plant Physiol; 2022 Nov; 190(4):2279-2294. PubMed ID: 36099023 [TBL] [Abstract][Full Text] [Related]
5. Stomatal closure of tomato under drought is driven by an increase in soil-root hydraulic resistance. Abdalla M; Carminati A; Cai G; Javaux M; Ahmed MA Plant Cell Environ; 2021 Feb; 44(2):425-431. PubMed ID: 33150971 [TBL] [Abstract][Full Text] [Related]
6. Water relations in tree physiology: where to from here? Landsberg J; Waring R; Ryan M Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481 [TBL] [Abstract][Full Text] [Related]
7. Non-hydraulic signals from maize roots in drying soil: inhibition of leaf elongation but not stomatal conductance. Saab IN; Sharp RE Planta; 1989 Nov; 179(4):466-74. PubMed ID: 24201770 [TBL] [Abstract][Full Text] [Related]
8. Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drought. Carminati A; Javaux M Trends Plant Sci; 2020 Sep; 25(9):868-880. PubMed ID: 32376085 [TBL] [Abstract][Full Text] [Related]
9. Transpiration response to soil drying versus increasing vapor pressure deficit in crops: physical and physiological mechanisms and key plant traits. Koehler T; Wankmüller FJP; Sadok W; Carminati A J Exp Bot; 2023 Sep; 74(16):4789-4807. PubMed ID: 37354081 [TBL] [Abstract][Full Text] [Related]
10. The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes. Hernandez MJ; Montes F; Ruiz F; Lopez G; Pita P Ann Bot; 2016 May; 117(6):1063-71. PubMed ID: 27052343 [TBL] [Abstract][Full Text] [Related]
11. Soil moisture heterogeneity regulates water use in Populus nigra L. by altering root and xylem sap phytohormone concentrations. Puértolas J; Pardos M; de Ollas C; Albacete A; Dodd IC Tree Physiol; 2020 May; 40(6):762-773. PubMed ID: 32193548 [TBL] [Abstract][Full Text] [Related]
13. Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration. Ehlert C; Maurel C; Tardieu F; Simonneau T Plant Physiol; 2009 Jun; 150(2):1093-104. PubMed ID: 19369594 [TBL] [Abstract][Full Text] [Related]
14. A hydraulic model is compatible with rapid changes in leaf elongation under fluctuating evaporative demand and soil water status. Caldeira CF; Bosio M; Parent B; Jeanguenin L; Chaumont F; Tardieu F Plant Physiol; 2014 Apr; 164(4):1718-30. PubMed ID: 24420931 [TBL] [Abstract][Full Text] [Related]
15. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange. Zhu J; Dai Z; Vivin P; Gambetta GA; Henke M; Peccoux A; Ollat N; Delrot S Ann Bot; 2018 Apr; 121(5):833-848. PubMed ID: 29293870 [TBL] [Abstract][Full Text] [Related]
16. Soil textures rather than root hairs dominate water uptake and soil-plant hydraulics under drought. Cai G; Carminati A; Abdalla M; Ahmed MA Plant Physiol; 2021 Oct; 187(2):858-872. PubMed ID: 34608949 [TBL] [Abstract][Full Text] [Related]
17. Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. Cochard H; Coll L; Le Roux X; Améglio T Plant Physiol; 2002 Jan; 128(1):282-90. PubMed ID: 11788773 [TBL] [Abstract][Full Text] [Related]
18. Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance. Duursma RA; Kolari P; Perämäki M; Nikinmaa E; Hari P; Delzon S; Loustau D; Ilvesniemi H; Pumpanen J; Mäkelä A Tree Physiol; 2008 Feb; 28(2):265-76. PubMed ID: 18055437 [TBL] [Abstract][Full Text] [Related]
19. Soil-plant hydraulics explain stomatal efficiency-safety tradeoff. Cai G; Carminati A; Gleason SM; Javaux M; Ahmed MA Plant Cell Environ; 2023 Oct; 46(10):3120-3127. PubMed ID: 36609853 [TBL] [Abstract][Full Text] [Related]
20. Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.). Bahrun A; Jensen CR; Asch F; Mogensen VO J Exp Bot; 2002 Feb; 53(367):251-63. PubMed ID: 11807129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]