These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32038706)

  • 1. Causalcall: Nanopore Basecalling Using a Temporal Convolutional Network.
    Zeng J; Cai H; Peng H; Wang H; Zhang Y; Akutsu T
    Front Genet; 2019; 10():1332. PubMed ID: 32038706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NanoReviser: An Error-Correction Tool for Nanopore Sequencing Based on a Deep Learning Algorithm.
    Wang L; Qu L; Yang L; Wang Y; Zhu H
    Front Genet; 2020; 11():900. PubMed ID: 32903372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of neural network basecalling tools for Oxford Nanopore sequencing.
    Wick RR; Judd LM; Holt KE
    Genome Biol; 2019 Jun; 20(1):129. PubMed ID: 31234903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lokatt: a hybrid DNA nanopore basecaller with an explicit duration hidden Markov model and a residual LSTM network.
    Xu X; Bhalla N; Ståhl P; Jaldén J
    BMC Bioinformatics; 2023 Dec; 24(1):461. PubMed ID: 38062356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RODAN: a fully convolutional architecture for basecalling nanopore RNA sequencing data.
    Neumann D; Reddy ASN; Ben-Hur A
    BMC Bioinformatics; 2022 Apr; 23(1):142. PubMed ID: 35443610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopore basecalling from a perspective of instance segmentation.
    Zhang YZ; Akdemir A; Tremmel G; Imoto S; Miyano S; Shibuya T; Yamaguchi R
    BMC Bioinformatics; 2020 Apr; 21(Suppl 3):136. PubMed ID: 32321433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basecalling Using Joint Raw and Event Nanopore Data Sequence-to-Sequence Processing.
    Napieralski A; Nowak R
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive benchmark and architectural analysis of deep learning models for nanopore sequencing basecalling.
    Pagès-Gallego M; de Ridder J
    Genome Biol; 2023 Apr; 24(1):71. PubMed ID: 37041647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species-specific basecallers improve actual accuracy of nanopore sequencing in plants.
    Ferguson S; McLay T; Andrew RL; Bruhl JJ; Schwessinger B; Borevitz J; Jones A
    Plant Methods; 2022 Dec; 18(1):137. PubMed ID: 36517904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BaseNet: A transformer-based toolkit for nanopore sequencing signal decoding.
    Li Q; Sun C; Wang D; Lou J
    Comput Struct Biotechnol J; 2024 Dec; 23():3430-3444. PubMed ID: 39391372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced detection of RNA modifications and read mapping with high-accuracy nanopore RNA basecalling models.
    Diensthuber G; Pryszcz LP; Llovera L; Lucas MC; Delgado-Tejedor A; Cruciani S; Roignant JY; Begik O; Novoa EM
    Genome Res; 2024 Sep; ():. PubMed ID: 39271295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SACall: A Neural Network Basecaller for Oxford Nanopore Sequencing Data Based on Self-Attention Mechanism.
    Huang N; Nie F; Ni P; Luo F; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):614-623. PubMed ID: 33211664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond sequencing: machine learning algorithms extract biology hidden in Nanopore signal data.
    Wan YK; Hendra C; Pratanwanich PN; Göke J
    Trends Genet; 2022 Mar; 38(3):246-257. PubMed ID: 34711425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying and correcting repeat-calling errors in nanopore sequencing of telomeres.
    Tan KT; Slevin MK; Meyerson M; Li H
    Genome Biol; 2022 Aug; 23(1):180. PubMed ID: 36028900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using deep learning for gene detection and classification in raw nanopore signals.
    Nykrynova M; Jakubicek R; Barton V; Bezdicek M; Lengerova M; Skutkova H
    Front Microbiol; 2022; 13():942179. PubMed ID: 36187947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MSRCall: a multi-scale deep neural network to basecall Oxford Nanopore sequences.
    Yeh YM; Lu YC
    Bioinformatics; 2022 Aug; 38(16):3877-3884. PubMed ID: 35766808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RUBICON: a framework for designing efficient deep learning-based genomic basecallers.
    Singh G; Alser M; Denolf K; Firtina C; Khodamoradi A; Cavlak MB; Corporaal H; Mutlu O
    Genome Biol; 2024 Feb; 25(1):49. PubMed ID: 38365730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepMP: a deep learning tool to detect DNA base modifications on Nanopore sequencing data.
    Bonet J; Chen M; Dabad M; Heath S; Gonzalez-Perez A; Lopez-Bigas N; Lagergren J
    Bioinformatics; 2022 Feb; 38(5):1235-1243. PubMed ID: 34718417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA m6A detection using raw current signals and basecalling errors from Nanopore direct RNA sequencing reads.
    Ni P; Xu J; Zhong Z; Luo F; Wang J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38889266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern recognition for automated DNA sequencing: I. On-line signal conditioning and feature extraction for basecalling.
    Golden JB; Torgersen D; Tibbetts C
    Proc Int Conf Intell Syst Mol Biol; 1993; 1():136-44. PubMed ID: 7584329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.