These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 32038715)
1. Transcriptional Profiling Reveals the Regulatory Role of Li J; Liu Q; Huang X; Cai Y; Song L; Xie Q; Liu F; Chen X; Xu P; Zeng F; Chu Y; Zeng F Front Genet; 2019; 10():1360. PubMed ID: 32038715 [TBL] [Abstract][Full Text] [Related]
2. Identification and Verification of Key Genes in Colorectal Cancer Liver Metastases Through Analysis of Single-Cell Sequencing Data and TCGA Data. Zhang H; Zhuo C; Lin R; Ke F; Wang M; Yang C Ann Surg Oncol; 2024 Dec; 31(13):8664-8679. PubMed ID: 39382748 [TBL] [Abstract][Full Text] [Related]
3. RNA sequencing reveals the expression profiles of circRNA and indicates that circDDX17 acts as a tumor suppressor in colorectal cancer. Li XN; Wang ZJ; Ye CX; Zhao BC; Li ZL; Yang Y J Exp Clin Cancer Res; 2018 Dec; 37(1):325. PubMed ID: 30591054 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional Profiling Reveals the Regulatory Role of DNER in Promoting Pancreatic Neuroendocrine Neoplasms. He R; Zhang W; Chen S; Liu Y; Yang W; Li J Front Genet; 2020; 11():587402. PubMed ID: 33329729 [TBL] [Abstract][Full Text] [Related]
5. FOXS1 Promotes Tumor Progression by Upregulating CXCL8 in Colorectal Cancer. Qiu J; Li M; Su C; Liang Y; Ou R; Chen X; Huang C; Zhang Y; Ye Y; Liao W; Zhang C Front Oncol; 2022; 12():894043. PubMed ID: 35898871 [TBL] [Abstract][Full Text] [Related]
6. CCL20 and CXCL8 synergize to promote progression and poor survival outcome in patients with colorectal cancer by collaborative induction of the epithelial-mesenchymal transition. Cheng XS; Li YF; Tan J; Sun B; Xiao YC; Fang XB; Zhang XF; Li Q; Dong JH; Li M; Qian HH; Yin ZF; Yang ZB Cancer Lett; 2014 Jun; 348(1-2):77-87. PubMed ID: 24657657 [TBL] [Abstract][Full Text] [Related]
7. High gene expression levels of VEGFA and CXCL8 in the peritumoral brain zone are associated with the recurrence of glioblastoma: A bioinformatics analysis. Luo X; Xu S; Zhong Y; Tu T; Xu Y; Li X; Wang B; Yang F Oncol Lett; 2019 Dec; 18(6):6171-6179. PubMed ID: 31788092 [TBL] [Abstract][Full Text] [Related]
8. The identification of a common different gene expression signature in patients with colorectal cancer. Zhao ZW; Fan XX; Yang LL; Song JJ; Fang SJ; Tu JF; Chen MJ; Zheng LY; Wu FZ; Zhang DK; Ying XH; Ji JS Math Biosci Eng; 2019 Apr; 16(4):2942-2958. PubMed ID: 31137244 [TBL] [Abstract][Full Text] [Related]
9. CXCL8 gene silencing promotes neuroglial cells activation while inhibiting neuroinflammation through the PI3K/Akt/NF-κB-signaling pathway in mice with ischemic stroke. Lv H; Li J; Che YQ J Cell Physiol; 2019 May; 234(5):7341-7355. PubMed ID: 30362547 [TBL] [Abstract][Full Text] [Related]
10. Delineating the underlying molecular mechanisms and key genes involved in metastasis of colorectal cancer via bioinformatics analysis. Qi C; Chen Y; Zhou Y; Huang X; Li G; Zeng J; Ruan Z; Xie X; Zhang J Oncol Rep; 2018 May; 39(5):2297-2305. PubMed ID: 29517105 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of Rasool M; Natesan Pushparaj P; Karim S Saudi J Biol Sci; 2021 Nov; 28(11):6045-6049. PubMed ID: 34764737 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of B7-H4 promotes renal cell carcinoma progression by recruiting tumor-associated neutrophils via upregulation of CXCL8. Li A; Zhang N; Zhao Z; Chen Y; Zhang L Oncol Lett; 2020 Aug; 20(2):1535-1544. PubMed ID: 32724395 [TBL] [Abstract][Full Text] [Related]
13. Analysis of differentially expressed circular RNAs for the identification of a coexpression RNA network and signature in colorectal cancer. Zhang Z; Song N; Wang Y; Zhong J; Gu T; Yang L; Shen X; Li Y; Yang X; Liu X; Yang R; Wang H J Cell Biochem; 2019 Apr; 120(4):6409-6419. PubMed ID: 30320923 [TBL] [Abstract][Full Text] [Related]
14. Screening key genes and signaling pathways in colorectal cancer by integrated bioinformatics analysis. Yu C; Chen F; Jiang J; Zhang H; Zhou M Mol Med Rep; 2019 Aug; 20(2):1259-1269. PubMed ID: 31173250 [TBL] [Abstract][Full Text] [Related]
15. Identification and Interaction Analysis of Molecular Markers in Colorectal Cancer by Integrated Bioinformatics Analysis. Han B; Feng D; Yu X; Zhang Y; Liu Y; Zhou L Med Sci Monit; 2018 Aug; 24():6059-6069. PubMed ID: 30168505 [TBL] [Abstract][Full Text] [Related]
16. RNA sequencing and bioinformatics analysis of the long noncoding RNA-mRNA network in colorectal cancer. Zhang Z; Jia H; Gu T; Hu Q; Yu J; Zang D; Song N; Wang H J Cell Biochem; 2018 Dec; 119(12):9957-9966. PubMed ID: 30145796 [TBL] [Abstract][Full Text] [Related]
17. CXCL8 Up-Regulated LSECtin through AKT Signal and Correlates with the Immune Microenvironment Modulation in Colon Cancer. Fang S; Cheng X; Shen T; Dong J; Li Y; Li Z; Tian L; Zhang Y; Pan X; Yin Z; Yang Z Cancers (Basel); 2022 Oct; 14(21):. PubMed ID: 36358719 [TBL] [Abstract][Full Text] [Related]
18. MicroRNA-205 functions as a tumor suppressor in colorectal cancer by targeting cAMP responsive element binding protein 1 (CREB1). Li P; Xue WJ; Feng Y; Mao QS Am J Transl Res; 2015; 7(10):2053-9. PubMed ID: 26692949 [TBL] [Abstract][Full Text] [Related]
19. Circular RNA-Associated Competing Endogenous RNA Network and Prognostic Nomogram for Patients With Colorectal Cancer. Song W; Fu T Front Oncol; 2019; 9():1181. PubMed ID: 31781492 [No Abstract] [Full Text] [Related]
20. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments. Zhang T; Guo J; Gu J; Wang Z; Wang G; Li H; Wang J Oncol Rep; 2019 Jan; 41(1):279-291. PubMed ID: 30542696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]