BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

565 related articles for article (PubMed ID: 32039024)

  • 1. Reverting Immune Suppression to Enhance Cancer Immunotherapy.
    Guerrouahen BS; Maccalli C; Cugno C; Rutella S; Akporiaye ET
    Front Oncol; 2019; 9():1554. PubMed ID: 32039024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The exploitation of enzyme-based cancer immunotherapy.
    Chandan G; Saini AK; Kumari R; Chakrabarti S; Mittal A; Sharma AK; Saini RV
    Hum Cell; 2023 Jan; 36(1):98-120. PubMed ID: 36334180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immune escape mechanisms and immunotherapy of urothelial bladder cancer.
    Yang Z; Xu Y; Bi Y; Zhang N; Wang H; Xing T; Bai S; Shen Z; Naz F; Zhang Z; Yin L; Shi M; Wang L; Wang L; Wang S; Xu L; Su X; Wu S; Yu C
    J Clin Transl Res; 2021 Aug; 7(4):485-500. PubMed ID: 34541363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ILT4 functions as a potential checkpoint molecule for tumor immunotherapy.
    Gao A; Sun Y; Peng G
    Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):278-285. PubMed ID: 29649510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives.
    Thomas R; Al-Khadairi G; Roelands J; Hendrickx W; Dermime S; Bedognetti D; Decock J
    Front Immunol; 2018; 9():947. PubMed ID: 29770138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overcoming tumor-mediated immunosuppression.
    Schlößer HA; Theurich S; Shimabukuro-Vornhagen A; Holtick U; Stippel DL; von Bergwelt-Baildon M
    Immunotherapy; 2014; 6(9):973-88. PubMed ID: 25341119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunosuppressive cells in tumor immune escape and metastasis.
    Liu Y; Cao X
    J Mol Med (Berl); 2016 May; 94(5):509-22. PubMed ID: 26689709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting iNOS to increase efficacy of immunotherapies.
    Ekmekcioglu S; Grimm EA; Roszik J
    Hum Vaccin Immunother; 2017 May; 13(5):1105-1108. PubMed ID: 28121247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-viral nano-immunotherapeutics targeting tumor microenvironmental immune cells.
    Yong SB; Chung JY; Song Y; Kim J; Ra S; Kim YH
    Biomaterials; 2019 Oct; 219():119401. PubMed ID: 31398571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving cancer immunotherapy by targeting tumor-induced immune suppression.
    Stewart TJ; Smyth MJ
    Cancer Metastasis Rev; 2011 Mar; 30(1):125-40. PubMed ID: 21249424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the immune system in cancer.
    Chaudhuri D; Suriano R; Mittelman A; Tiwari RK
    Curr Pharm Biotechnol; 2009 Feb; 10(2):166-84. PubMed ID: 19199949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of regulatory T cells in cancer immunity.
    Takeuchi Y; Nishikawa H
    Int Immunol; 2016 Aug; 28(8):401-9. PubMed ID: 27160722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune Escape in Glioblastoma: Mechanisms of Action and Implications for Immune Checkpoint Inhibitors and CAR T-Cell Therapy.
    Yu C; Hsieh K; Cherry DR; Nehlsen AD; Resende Salgado L; Lazarev S; Sindhu KK
    Biology (Basel); 2023 Dec; 12(12):. PubMed ID: 38132354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunotherapy for colorectal cancer: where are we heading?
    Basile D; Garattini SK; Bonotto M; Ongaro E; Casagrande M; Cattaneo M; Fanotto V; De Carlo E; Loupakis F; Urbano F; Negri FV; Pella N; Russano M; Brunetti O; Scartozzi M; Santini D; Silvestris N; Casadei Gardini A; Puzzoni M; Calvetti L; Cardarelli N; Aprile G
    Expert Opin Biol Ther; 2017 Jun; 17(6):709-721. PubMed ID: 28375039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy.
    Gao S; Yang D; Fang Y; Lin X; Jin X; Wang Q; Wang X; Ke L; Shi K
    Theranostics; 2019; 9(1):126-151. PubMed ID: 30662558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules.
    D'Arrigo P; Tufano M; Rea A; Vigorito V; Novizio N; Russo S; Romano MF; Romano S
    Curr Med Chem; 2020; 27(15):2402-2448. PubMed ID: 30398102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting immune responses in lung tumor immune microenvironment: A comprehensive review of strategies and adjuvants.
    Gao F; You X; Yang L; Zou X; Sui B
    Int Rev Immunol; 2024 Mar; ():1-29. PubMed ID: 38525925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of costimulatory and inhibitory receptors in FoxP3
    Toker A; Ohashi PS
    Adv Cancer Res; 2019; 144():193-261. PubMed ID: 31349899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local angiotensin II contributes to tumor resistance to checkpoint immunotherapy.
    Xie G; Cheng T; Lin J; Zhang L; Zheng J; Liu Y; Xie G; Wang B; Yuan Y
    J Immunother Cancer; 2018 Sep; 6(1):88. PubMed ID: 30208943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets.
    Tie Y; Tang F; Wei YQ; Wei XW
    J Hematol Oncol; 2022 May; 15(1):61. PubMed ID: 35585567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.