BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32039165)

  • 1. An Easy and Efficient Strategy for the Enhancement of Epothilone Production Mediated by TALE-TF and CRISPR/dcas9 Systems in
    Ye W; Liu T; Zhu M; Zhang W; Huang Z; Li S; Li H; Kong Y; Chen Y
    Front Bioeng Biotechnol; 2019; 7():334. PubMed ID: 32039165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Improvement of Epothilone D Yield by the Disruption of epoK Gene in Sorangium cellulosum Using TALEN System.
    Ye W; Liu T; Zhang WM; Zhang W; Li S
    Mol Biotechnol; 2023 Feb; 65(2):282-289. PubMed ID: 36401710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new approach for improving epothilone B yield in Sorangium cellulosum by the introduction of vgb epoF genes.
    Ye W; Zhang W; Chen Y; Li H; Li S; Pan Q; Tan G; Liu T
    J Ind Microbiol Biotechnol; 2016 May; 43(5):641-50. PubMed ID: 26803504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus.
    Peng R; Wang Y; Feng WW; Yue XJ; Chen JH; Hu XZ; Li ZF; Sheng DH; Zhang YM; Li YZ
    Microb Cell Fact; 2018 Jan; 17(1):15. PubMed ID: 29378572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems.
    Lowder LG; Zhou J; Zhang Y; Malzahn A; Zhong Z; Hsieh TF; Voytas DF; Zhang Y; Qi Y
    Mol Plant; 2018 Feb; 11(2):245-256. PubMed ID: 29197638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-cultivation of Sorangium cellulosum strains affects cellular growth and biosynthesis of secondary metabolite epothilones.
    Li PF; Li SG; Li ZF; Zhao L; Wang T; Pan HW; Liu H; Wu ZH; Li YZ
    FEMS Microbiol Ecol; 2013 Aug; 85(2):358-68. PubMed ID: 23551077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective production of epothilone B by heterologous expression of propionyl-CoA synthetase in Sorangium cellulosum.
    Han SJ; Park SW; Park BW; Sim SJ
    J Microbiol Biotechnol; 2008 Jan; 18(1):135-7. PubMed ID: 18239430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90.
    Molnár I; Schupp T; Ono M; Zirkle R; Milnamow M; Nowak-Thompson B; Engel N; Toupet C; Stratmann A; Cyr DD; Gorlach J; Mayo JM; Hu A; Goff S; Schmid J; Ligon JM
    Chem Biol; 2000 Feb; 7(2):97-109. PubMed ID: 10662695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Production of Epothilone by Immobilized Sorangium cellulosum in Porous Ceramics.
    Gong GL; Huang YY; Liu LL; Chen XF; Liu H
    J Microbiol Biotechnol; 2015 Oct; 25(10):1653-9. PubMed ID: 25951845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient activation of endogenous gene in grape using CRISPR/dCas9-based transcriptional activators.
    Ren C; Li H; Liu Y; Li S; Liang Z
    Hortic Res; 2022 Jan; 9():. PubMed ID: 35039855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Comparison between VP64-dCas9-VP64 and dCas9-VP192 CRISPR Activators in Human Embryonic Kidney Cells.
    Javaid N; Pham TLH; Choi S
    Int J Mol Sci; 2021 Jan; 22(1):. PubMed ID: 33401508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic stellate cell reprogramming via exosome-mediated CRISPR/dCas9-VP64 delivery.
    Luo N; Li J; Chen Y; Xu Y; Wei Y; Lu J; Dong R
    Drug Deliv; 2021 Dec; 28(1):10-18. PubMed ID: 33336604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene activation by a CRISPR-assisted
    Xu X; Gao J; Dai W; Wang D; Wu J; Wang J
    Elife; 2019 Apr; 8():. PubMed ID: 30973327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics and activity analysis of epothilone operon promoters from Sorangium cellulosum strains in Escherichia coli.
    Zhu LP; Li ZF; Sun X; Li SG; Li YZ
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):6857-66. PubMed ID: 23549746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterisation of the epothilone gene cluster with flanks from high alkalotolerant strain Sorangium cellulosum (So0157-2).
    Li ZF; Zhu LP; Gu JY; Singh RP; Li YZ
    World J Microbiol Biotechnol; 2017 Jul; 33(7):137. PubMed ID: 28585173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous expression of epothilone biosynthetic genes in Myxococcus xanthus.
    Julien B; Shah S
    Antimicrob Agents Chemother; 2002 Sep; 46(9):2772-8. PubMed ID: 12183227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic activation of cardiosphere-derived cells enhances myocardial repair.
    Sano T; Ito T; Ishigami S; Bandaru S; Sano S
    J Thorac Cardiovasc Surg; 2022 Apr; 163(4):1479-1490.e5. PubMed ID: 32682583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable activation of Bombyx gene expression using CRISPR/dCas9 fusion systems.
    Wang XG; Ma SY; Chang JS; Shi R; Wang RL; Zhao P; Xia QY
    Insect Sci; 2019 Dec; 26(6):983-990. PubMed ID: 30088341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of dCas9-VP64 variants and multiplexed guide RNAs mediating CRISPR activation.
    Omachi K; Miner JH
    PLoS One; 2022; 17(6):e0270008. PubMed ID: 35763517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and bioprocess optimization of antitumor Epothilone B analogue from Aspergillus fumigatus, endophyte of Catharanthus roseus, with response surface methodology.
    El-Sayed ASA; Shindia AA; Ali GS; Yassin MA; Hussein H; Awad SA; Ammar HA
    Enzyme Microb Technol; 2021 Feb; 143():109718. PubMed ID: 33375978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.