BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32039230)

  • 1. Determining the Effect of External Stressors and Cognitive Distraction on Microsurgical Skills and Performance.
    Carr S; McDermott BR; McInerney N; Hussey A; Byrne D; Potter S
    Front Surg; 2019; 6():77. PubMed ID: 32039230
    [No Abstract]   [Full Text] [Related]  

  • 2. Are Plastic Surgery Trainees Accurate Assessors of Their Own Microsurgical Skill?
    Carolan D; Milling R; Quinlan C; Carr S; Kinsella A; McDermott BR; Hussey A; Potter S
    JPRAS Open; 2023 Sep; 37():24-33. PubMed ID: 37303698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microsurgery simulation training system and set up: An essential system to complement every training programme.
    Masud D; Haram N; Moustaki M; Chow W; Saour S; Mohanna PN
    J Plast Reconstr Aesthet Surg; 2017 Jul; 70(7):893-900. PubMed ID: 28526634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acquisition of basic microsurgery skills using home-based simulation training: A randomised control study.
    Malik MM; Hachach-Haram N; Tahir M; Al-Musabi M; Masud D; Mohanna PN
    J Plast Reconstr Aesthet Surg; 2017 Apr; 70(4):478-486. PubMed ID: 28161208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing microsurgical skill acquisition during a dedicated training course.
    Nugent E; Joyce C; Perez-Abadia G; Frank J; Sauerbier M; Neary P; Gallagher AG; Traynor O; Carroll S
    Microsurgery; 2012 Nov; 32(8):649-56. PubMed ID: 23086761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Description and implementation of an ex vivo simulator kit for developing microsurgery skills.
    Soto-Miranda MA; Ver Halen JP
    Ann Plast Surg; 2014; 72(6):S208-12. PubMed ID: 24691333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the efficacy of microsurgical practice through time factor added protocol: microsurgical training using nonvital material.
    Hong JW; Kim YS; Lee WJ; Hong HJ; Roh TS; Song SY
    J Craniofac Surg; 2010 May; 21(3):876-81. PubMed ID: 20485073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validating a Low-Fidelity Model for Microsurgical Anastomosis Training.
    Mohammad S; Hanstein R; Lo Y; Levy IM
    JB JS Open Access; 2021; 6(3):. PubMed ID: 34291182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anastomosis Lapse Index (ALI): A Validated End Product Assessment Tool for Simulation Microsurgery Training.
    Ghanem AM; Al Omran Y; Shatta B; Kim E; Myers S
    J Reconstr Microsurg; 2016 Mar; 32(3):233-41. PubMed ID: 26645156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An objective skill assessment framework for microsurgical anastomosis based on ALI scores.
    Gholami S; Manon A; Yao K; Billard A; Meling TR
    Acta Neurochir (Wien); 2024 Feb; 166(1):104. PubMed ID: 38400918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experienced surgeons can do more than one thing at a time: effect of distraction on performance of a simple laparoscopic and cognitive task by experienced and novice surgeons.
    Hsu KE; Man FY; Gizicki RA; Feldman LS; Fried GM
    Surg Endosc; 2008 Jan; 22(1):196-201. PubMed ID: 17705087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Microvascular Anastomosis Technique on End Product Outcome in Simulated Training: A Prospective Blinded Randomized Controlled Trial.
    Kim E; Singh M; Akelina Y; Shurey S; Myers SR; Ghanem AM
    J Reconstr Microsurg; 2016 Sep; 32(7):556-61. PubMed ID: 27303937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microvascular anastomosis simulation using a chicken thigh model: Interval versus massed training.
    Schoeff S; Hernandez B; Robinson DJ; Jameson MJ; Shonka DC
    Laryngoscope; 2017 Nov; 127(11):2490-2494. PubMed ID: 28407264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realistic distractions and interruptions that impair simulated surgical performance by novice surgeons.
    Feuerbacher RL; Funk KH; Spight DH; Diggs BS; Hunter JG
    Arch Surg; 2012 Nov; 147(11):1026-30. PubMed ID: 22801787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing Grasp Monitoring to Predict Microsurgical Expertise.
    Koskinen J; He W; Elomaa AP; Kaipainen A; Hussein A; Zheng B; Huotarinen A; Bednarik R
    J Surg Res; 2023 Feb; 282():101-108. PubMed ID: 36265429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer of training in robotic-assisted microvascular surgery.
    Karamanoukian RL; Bui T; McConnell MP; Evans GR; Karamanoukian HL
    Ann Plast Surg; 2006 Dec; 57(6):662-5. PubMed ID: 17122554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Chicken Thigh Adductor Profundus Free Muscle Flap: A Novel Validated Non-Living Microsurgery Simulation Training Model.
    Pafitanis G; Serrar Y; Raveendran M; Ghanem A; Myers S
    Arch Plast Surg; 2017 Jul; 44(4):293-300. PubMed ID: 28728324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preclinical Performance of the Combined Application of Two Robotic Systems in Microsurgery: A Two-center Study.
    Wessel KJ; Stögner VA; Yu CT; Pomahac B; Hirsch T; Ayyala HS; Kueckelhaus M
    Plast Reconstr Surg Glob Open; 2024 Apr; 12(4):e5775. PubMed ID: 38689940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interview Scores Correlate with Fellow Microsurgical Skill and Performance.
    Schaverien MV; Butler CE; Suami H; Garvey PB; Liu J; Selber JC
    J Reconstr Microsurg; 2018 Mar; 34(3):211-217. PubMed ID: 29078228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors Correlating With Microsurgical Performance: A Clinical and Experimental Study.
    Schaverien MV; Liu J; Butler CE; Selber JC
    J Surg Educ; 2018; 75(4):1045-1051. PubMed ID: 29199083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.