These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32039452)

  • 1. Engineering mammalian cells to produce plant-specific N-glycosylation on proteins.
    Larsen JS; Karlsson RTG; Tian W; Schulz MA; Matthes A; Clausen H; Petersen BL; Yang Z
    Glycobiology; 2020 Jul; 30(8):528-538. PubMed ID: 32039452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern.
    Schähs M; Strasser R; Stadlmann J; Kunert R; Rademacher T; Steinkellner H
    Plant Biotechnol J; 2007 Sep; 5(5):657-63. PubMed ID: 17678502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1,2-xylose and core α-1,3-fucose.
    Jansing J; Sack M; Augustine SM; Fischer R; Bortesi L
    Plant Biotechnol J; 2019 Feb; 17(2):350-361. PubMed ID: 29969180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced immunogenicity of Arabidopsis hgl1 mutant N-glycans caused by altered accessibility of xylose and core fucose epitopes.
    Kaulfürst-Soboll H; Rips S; Koiwa H; Kajiura H; Fujiyama K; von Schaewen A
    J Biol Chem; 2011 Jul; 286(26):22955-64. PubMed ID: 21478158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sialylated recombinant human erythropoietin production in large-scale perfusion bioreactor utilizing CHO-gmt4 (JW152) with restored GnT I function.
    Goh JS; Liu Y; Liu H; Chan KF; Wan C; Teo G; Zhou X; Xie F; Zhang P; Zhang Y; Song Z
    Biotechnol J; 2014 Jan; 9(1):100-9. PubMed ID: 24166780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering nucleotide sugar synthesis pathways for independent and simultaneous modulation of N-glycan galactosylation and fucosylation in CHO cells.
    Prabhu A; Shanmugam D; Gadgil M
    Metab Eng; 2022 Nov; 74():61-71. PubMed ID: 36152932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mammalian α-1,6-Fucosyltransferase (FUT8) Is the Sole Enzyme Responsible for the N-Acetylglucosaminyltransferase I-independent Core Fucosylation of High-mannose N-Glycans.
    Yang Q; Wang LX
    J Biol Chem; 2016 May; 291(21):11064-71. PubMed ID: 27008861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of intact glycopeptides reveals the impact of culture media on site-specific glycosylation of EPO-Fc fusion protein generated by CHO-GS cells.
    Wang Q; Yang G; Wang T; Yang W; Betenbaugh MJ; Zhang H
    Biotechnol Bioeng; 2019 Sep; 116(9):2303-2315. PubMed ID: 31062865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycoengineering design options for IgG1 in CHO cells using precise gene editing.
    Schulz MA; Tian W; Mao Y; Van Coillie J; Sun L; Larsen JS; Chen YH; Kristensen C; Vakhrushev SY; Clausen H; Yang Z
    Glycobiology; 2018 Jul; 28(7):542-549. PubMed ID: 29596681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient method to control high mannose and core fucose levels in glycosylated antibody production using deoxymannojirimycin.
    Shalel Levanon S; Aharonovitz O; Maor-Shoshani A; Abraham G; Kenett D; Aloni Y
    J Biotechnol; 2018 Jun; 276-277():54-62. PubMed ID: 29673624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of plant-specific sugar residues in plant N-glycans by repression of GDP-D-mannose 4,6-dehydratase and β-1,2-xylosyltransferase genes.
    Matsuo K; Kagaya U; Itchoda N; Tabayashi N; Matsumura T
    J Biosci Bioeng; 2014 Oct; 118(4):448-54. PubMed ID: 24794851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosylation characterization of recombinant human erythropoietin produced in glycoengineered Pichia pastoris by mass spectrometry.
    Gong B; Burnina I; Stadheim TA; Li H
    J Mass Spectrom; 2013 Dec; 48(12):1308-17. PubMed ID: 24338886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The GalNAc-type O-Glycoproteome of CHO cells characterized by the SimpleCell strategy.
    Yang Z; Halim A; Narimatsu Y; Jitendra Joshi H; Steentoft C; Schjoldager KT; Alder Schulz M; Sealover NR; Kayser KJ; Paul Bennett E; Levery SB; Vakhrushev SY; Clausen H
    Mol Cell Proteomics; 2014 Dec; 13(12):3224-35. PubMed ID: 25092905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycoengineering of Mammalian Expression Systems on a Cellular Level.
    Heffner KM; Wang Q; Hizal DB; Can Ö; Betenbaugh MJ
    Adv Biochem Eng Biotechnol; 2021; 175():37-69. PubMed ID: 29532110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of FX
    Liu W; Padmashali R; Monzon OQ; Lundberg D; Jin S; Dwyer B; Lee YJ; Korde A; Park S; Pan C; Zhang B
    Biotechnol Prog; 2021 Jan; 37(1):e3061. PubMed ID: 32748555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of recombinant human EPO production and glycosylation in serum-free suspension culture of CHO cells through expression and supplementation of 30Kc19.
    Park JH; Wang Z; Jeong HJ; Park HH; Kim BG; Tan WS; Choi SS; Park TH
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):671-83. PubMed ID: 22714097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of afucosylated antibodies in CHO cells by coexpression of an anti-FUT8 intrabody.
    Joubert S; Guimond J; Perret S; Malenfant F; Elahi SM; Marcil A; Parat M; Gilbert M; Lenferink AEG; Baardsnes J; Durocher Y
    Biotechnol Bioeng; 2022 Aug; 119(8):2206-2220. PubMed ID: 35509261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure.
    Strasser R; Stadlmann J; Schähs M; Stiegler G; Quendler H; Mach L; Glössl J; Weterings K; Pabst M; Steinkellner H
    Plant Biotechnol J; 2008 May; 6(4):392-402. PubMed ID: 18346095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of GDP-fucose transporter gene (Slc35c1) in CHO cells by ZFNs, TALENs and CRISPR-Cas9 for production of fucose-free antibodies.
    Chan KF; Shahreel W; Wan C; Teo G; Hayati N; Tay SJ; Tong WH; Yang Y; Rudd PM; Zhang P; Song Z
    Biotechnol J; 2016 Mar; 11(3):399-414. PubMed ID: 26471004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics.
    Kanda Y; Imai-Nishiya H; Kuni-Kamochi R; Mori K; Inoue M; Kitajima-Miyama K; Okazaki A; Iida S; Shitara K; Satoh M
    J Biotechnol; 2007 Jun; 130(3):300-10. PubMed ID: 17559959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.