These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 3203970)

  • 21. In vivo and in vitro stability of modified poly(urethaneurea) blood sacs.
    Liu Q; Runt J; Felder G; Rosenberg G; Snyder AJ; Weiss WJ; Lewis J; Werley T
    J Biomater Appl; 2000 Apr; 14(4):349-66. PubMed ID: 10794507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A tricuspid polyurethane heart valve as an alternative to mechanical prostheses or bioprostheses.
    Lo HB; Herold M; Reul H; Mückter H; Taguchi K; Surmann M; Hildinger KH; Lambertz H; de Haan H; Handt S
    ASAIO Trans; 1988; 34(3):839-44. PubMed ID: 3196608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The properties and medical uses of materials. 3:2. The effect of materials on blood.
    Williams DF
    Biomed Eng; 1971 May; 6(5):205-8. PubMed ID: 5096867
    [No Abstract]   [Full Text] [Related]  

  • 24. Biostability of materials and implants.
    Bruck SD
    J Long Term Eff Med Implants; 1991; 1(1):89-106. PubMed ID: 10171109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mammary implants.
    Kossovsky N; Papasian N
    J Appl Biomater; 1992; 3(3):239-42. PubMed ID: 10171554
    [No Abstract]   [Full Text] [Related]  

  • 26. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies.
    Christenson EM; Dadsetan M; Wiggins M; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Jun; 69(3):407-16. PubMed ID: 15127387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo biostability of polysiloxane polyether polyurethanes: resistance to biologic oxidation and stress cracking.
    Ward R; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2006 Jun; 77(3):580-9. PubMed ID: 16506175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of soft segment chemistry on the biostability of segmented polyurethanes. II. In vitro hydrolytic degradation and lipid sorption.
    Takahara A; Hergenrother RW; Coury AJ; Cooper SL
    J Biomed Mater Res; 1992 Jun; 26(6):801-18. PubMed ID: 1527102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo biocompatibility studies. II. Biomer: preliminary cell adhesion and surface characterization studies.
    Marchant RE; Anderson JM; Phua K; Hiltner A
    J Biomed Mater Res; 1984 Mar; 18(3):309-15. PubMed ID: 6715395
    [No Abstract]   [Full Text] [Related]  

  • 30. Biomedical materials.
    Gibbons DF
    Annu Rev Biophys Bioeng; 1975; 4(00):367-75. PubMed ID: 1098561
    [No Abstract]   [Full Text] [Related]  

  • 31. Introduction of a flexible polymeric heart valve prosthesis with special design for aortic position.
    Daebritz SH; Fausten B; Hermanns B; Schroeder J; Groetzner J; Autschbach R; Messmer BJ; Sachweh JS
    Eur J Cardiothorac Surg; 2004 Jun; 25(6):946-52. PubMed ID: 15144993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biostability of polyurethane elastomers: a critical review.
    Szycher M
    J Biomater Appl; 1988 Oct; 3(2):297-402. PubMed ID: 3060587
    [No Abstract]   [Full Text] [Related]  

  • 33. Mechanical and morphological study of biostable polyurethane heart valve leaflets explanted from sheep.
    Bernacca GM; Straub I; Wheatley DJ
    J Biomed Mater Res; 2002 Jul; 61(1):138-45. PubMed ID: 12001256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Introduction of a flexible polymeric heart valve prosthesis with special design for mitral position.
    Daebritz SH; Sachweh JS; Hermanns B; Fausten B; Franke A; Groetzner J; Klosterhalfen B; Messmer BJ
    Circulation; 2003 Sep; 108 Suppl 1():II134-9. PubMed ID: 12970222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Medical applications of polymeric materials.
    Bruck SD
    Med Prog Technol; 1982; 9(1):1-16. PubMed ID: 6752684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo biostability of shore 55D polyether polyurethanes with and without fluoropolymer surface modifying endgroups.
    Ward R; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2006 Dec; 79(4):836-45. PubMed ID: 16886224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of material surface chemistry in implant device calcification: a hypothesis.
    Thoma RJ; Phillips RE
    J Heart Valve Dis; 1995 May; 4(3):214-21. PubMed ID: 7655678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of the curvatures and bending strains in open trileaflet heart valves.
    Corden J; David T; Fisher J
    Proc Inst Mech Eng H; 1995; 209(2):121-8. PubMed ID: 7495427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft.
    Han DK; Park K; Park KD; Ahn KD; Kim YH
    Artif Organs; 2006 Dec; 30(12):955-9. PubMed ID: 17181836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative evaluation of disk- and trileaflet valves in left-ventricular assist devices (LVAD).
    Reul H; Taguchi K; Herold M; Lo HB; Reck B; Mückter H; Messmer BJ; Rau G
    Int J Artif Organs; 1988 Mar; 11(2):127-30. PubMed ID: 3372050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.