These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32039761)

  • 21. Functional properties of stellate cells in medial entorhinal cortex layer II.
    Rowland DC; Obenhaus HA; Skytøen ER; Zhang Q; Kentros CG; Moser EI; Moser MB
    Elife; 2018 Sep; 7():. PubMed ID: 30215597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microcircuits of functionally identified neurons in the rat medial entorhinal cortex.
    Burgalossi A; Herfst L; von Heimendahl M; Förste H; Haskic K; Schmidt M; Brecht M
    Neuron; 2011 May; 70(4):773-86. PubMed ID: 21609831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cholinergic modulation of the resonance properties of stellate cells in layer II of medial entorhinal cortex.
    Heys JG; Giocomo LM; Hasselmo ME
    J Neurophysiol; 2010 Jul; 104(1):258-70. PubMed ID: 20445030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hyperpolarization-activated cation currents in stellate and pyramidal neurons of rat entorhinal cortex.
    Richter H; Heinemann U; Eder C
    Neurosci Lett; 2000 Mar; 281(1):33-6. PubMed ID: 10686409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Knock-out of HCN1 subunit flattens dorsal-ventral frequency gradient of medial entorhinal neurons in adult mice.
    Giocomo LM; Hasselmo ME
    J Neurosci; 2009 Jun; 29(23):7625-30. PubMed ID: 19515931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Grid cells correlation structure suggests organized feedforward projections into superficial layers of the medial entorhinal cortex.
    Tocker G; Barak O; Derdikman D
    Hippocampus; 2015 Dec; 25(12):1599-613. PubMed ID: 26105192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rebound spiking properties of mouse medial entorhinal cortex neurons in vivo.
    Tsuno Y; Chapman GW; Hasselmo ME
    Eur J Neurosci; 2015 Dec; 42(11):2974-84. PubMed ID: 26454151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields.
    Pastoll H; Ramsden HL; Nolan MF
    Front Neural Circuits; 2012; 6():17. PubMed ID: 22536175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How reduction of theta rhythm by medial septum inactivation may covary with disruption of entorhinal grid cell responses due to reduced cholinergic transmission.
    Pilly PK; Grossberg S
    Front Neural Circuits; 2013; 7():173. PubMed ID: 24198762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex.
    Pérez-Escobar JA; Kornienko O; Latuske P; Kohler L; Allen K
    Elife; 2016 Jul; 5():. PubMed ID: 27449281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Postnatal Development of Functional Projections from Parasubiculum and Presubiculum to Medial Entorhinal Cortex in the Rat.
    Canto CB; Koganezawa N; Lagartos-Donate MJ; O'Reilly KC; Mansvelder HD; Witter MP
    J Neurosci; 2019 Oct; 39(44):8645-8663. PubMed ID: 31511428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frequency of subthreshold oscillations at different membrane potential voltages in neurons at different anatomical positions on the dorsoventral axis in the rat medial entorhinal cortex.
    Yoshida M; Giocomo LM; Boardman I; Hasselmo ME
    J Neurosci; 2011 Aug; 31(35):12683-94. PubMed ID: 21880929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How entorhinal grid cells may learn multiple spatial scales from a dorsoventral gradient of cell response rates in a self-organizing map.
    Grossberg S; Pilly PK
    PLoS Comput Biol; 2012; 8(10):e1002648. PubMed ID: 23055909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Grid-Cell Activity on Linear Tracks Indicates Purely Translational Remapping of 2D Firing Patterns at Movement Turning Points.
    Pröll M; Häusler S; Herz AVM
    J Neurosci; 2018 Aug; 38(31):7004-7011. PubMed ID: 29976622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Post-Inhibitory Rebound Spikes in Rat Medial Entorhinal Layer II/III Principal Cells: In Vivo, In Vitro, and Computational Modeling Characterization.
    Ferrante M; Shay CF; Tsuno Y; William Chapman G; Hasselmo ME
    Cereb Cortex; 2017 Mar; 27(3):2111-2125. PubMed ID: 26965902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neurons in Primate Entorhinal Cortex Represent Gaze Position in Multiple Spatial Reference Frames.
    Meister MLR; Buffalo EA
    J Neurosci; 2018 Mar; 38(10):2430-2441. PubMed ID: 29386260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spiking neurons in a hierarchical self-organizing map model can learn to develop spatial and temporal properties of entorhinal grid cells and hippocampal place cells.
    Pilly PK; Grossberg S
    PLoS One; 2013; 8(4):e60599. PubMed ID: 23577130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A theory of joint attractor dynamics in the hippocampus and the entorhinal cortex accounts for artificial remapping and grid cell field-to-field variability.
    Agmon H; Burak Y
    Elife; 2020 Aug; 9():. PubMed ID: 32779570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electroresponsiveness of medial entorhinal cortex layer III neurons in vitro.
    Dickson CT; Mena AR; Alonso A
    Neuroscience; 1997 Dec; 81(4):937-50. PubMed ID: 9330357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activity disruption causes degeneration of entorhinal neurons in a mouse model of Alzheimer's circuit dysfunction.
    Zhao R; Grunke SD; Wood CA; Perez GA; Comstock M; Li MH; Singh AK; Park KW; Jankowsky JL
    Elife; 2022 Dec; 11():. PubMed ID: 36468693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.