BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32039887)

  • 1. Conformational flexibility within the small domain of human serine racemase.
    Koulouris CR; Bax BD; Atack JR; Roe SM
    Acta Crystallogr F Struct Biol Commun; 2020 Feb; 76(Pt 2):65-73. PubMed ID: 32039887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of mammalian serine racemase: evidence for conformational changes upon inhibitor binding.
    Smith MA; Mack V; Ebneth A; Moraes I; Felicetti B; Wood M; Schonfeld D; Mather O; Cesura A; Barker J
    J Biol Chem; 2010 Apr; 285(17):12873-81. PubMed ID: 20106978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of maize serine racemase with pyridoxal 5'-phosphate.
    Zou L; Song Y; Wang C; Sun J; Wang L; Cheng B; Fan J
    Acta Crystallogr F Struct Biol Commun; 2016 Mar; 72(Pt 3):165-71. PubMed ID: 26919519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP binding to human serine racemase is cooperative and modulated by glycine.
    Marchetti M; Bruno S; Campanini B; Peracchi A; Mai N; Mozzarelli A
    FEBS J; 2013 Nov; 280(22):5853-63. PubMed ID: 23992455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases.
    Meziane-Cherif D; Stogios PJ; Evdokimova E; Egorova O; Savchenko A; Courvalin P
    mBio; 2015 Aug; 6(4):e00806. PubMed ID: 26265719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of a pyridoxal 5'-phosphate-dependent aspartate racemase derived from the bivalve mollusc Scapharca broughtonii.
    Mizobuchi T; Nonaka R; Yoshimura M; Abe K; Takahashi S; Kera Y; Goto M
    Acta Crystallogr F Struct Biol Commun; 2017 Dec; 73(Pt 12):651-656. PubMed ID: 29199985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of the reaction catalyzed by mandelate racemase. 2. Crystal structure of mandelate racemase at 2.5-A resolution: identification of the active site and possible catalytic residues.
    Neidhart DJ; Howell PL; Petsko GA; Powers VM; Li RS; Kenyon GL; Gerlt JA
    Biochemistry; 1991 Sep; 30(38):9264-73. PubMed ID: 1892834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Malonate-based inhibitors of mammalian serine racemase: kinetic characterization and structure-based computational study.
    Vorlová B; Nachtigallová D; Jirásková-Vaníčková J; Ajani H; Jansa P; Rezáč J; Fanfrlík J; Otyepka M; Hobza P; Konvalinka J; Lepšík M
    Eur J Med Chem; 2015 Jan; 89():189-97. PubMed ID: 25462239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosine 121 moves revealing a ligandable pocket that couples catalysis to ATP-binding in serine racemase.
    Koulouris CR; Gardiner SE; Harris TK; Elvers KT; Mark Roe S; Gillespie JA; Ward SE; Grubisha O; Nicholls RA; Atack JR; Bax BD
    Commun Biol; 2022 Apr; 5(1):346. PubMed ID: 35410329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human serine racemase structure/activity relationship studies provide mechanistic insight and point to position 84 as a hot spot for β-elimination function.
    Nelson DL; Applegate GA; Beio ML; Graham DL; Berkowitz DB
    J Biol Chem; 2017 Aug; 292(34):13986-14002. PubMed ID: 28696262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic mechanism of serine racemase from Dictyostelium discoideum.
    Ito T; Maekawa M; Hayashi S; Goto M; Hemmi H; Yoshimura T
    Amino Acids; 2013 Mar; 44(3):1073-84. PubMed ID: 23269477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serine racemase interaction with N-methyl-D-aspartate receptors antagonist reveals potential alternative target of chronic pain treatment: Molecular docking study.
    Laksono RM; Kalim H; Rohman MS; Widodo N; Ahmad MR
    J Adv Pharm Technol Res; 2022; 13(3):232-237. PubMed ID: 35935687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human Serine Racemase: Key Residues/Active Site Motifs and Their Relation to Enzyme Function.
    Graham DL; Beio ML; Nelson DL; Berkowitz DB
    Front Mol Biosci; 2019; 6():8. PubMed ID: 30918891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. D-amino acids in the brain: structure and function of pyridoxal phosphate-dependent amino acid racemases.
    Yoshimura T; Goto M
    FEBS J; 2008 Jul; 275(14):3527-37. PubMed ID: 18564179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating the function of human serine racemase and human serine dehydratase by protein engineering.
    Wang CY; Ku SC; Lee CC; Wang AH
    Protein Eng Des Sel; 2012 Nov; 25(11):741-9. PubMed ID: 23112234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. D-amino acids in the brain: the biochemistry of brain serine racemase.
    Baumgart F; Rodríguez-Crespo I
    FEBS J; 2008 Jul; 275(14):3538-45. PubMed ID: 18564178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of human serine racemase activity and dynamics by halides, ATP and malonate.
    Marchetti M; Bruno S; Campanini B; Bettati S; Peracchi A; Mozzarelli A
    Amino Acids; 2015 Jan; 47(1):163-73. PubMed ID: 25331425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serine racemase and the serine shuttle between neurons and astrocytes.
    Wolosker H
    Biochim Biophys Acta; 2011 Nov; 1814(11):1558-66. PubMed ID: 21224019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of eukaryotic serine racemase-catalyzed serine dehydration.
    Ito T; Matsuoka M; Goto M; Watanabe S; Mizobuchi T; Matsushita K; Nasu R; Hemmi H; Yoshimura T
    Biochim Biophys Acta Proteins Proteom; 2020 Sep; 1868(9):140460. PubMed ID: 32474107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Development of a Regulator of Human Serine Racemase for N-Methyl-D-aspartate Function.
    Lu LP; Chang WH; Mao YW; Cheng MC; Zhuang XY; Kuo CS; Lai YA; Shih TM; Chou TY; Tsai GE
    Biomedicines; 2024 Apr; 12(4):. PubMed ID: 38672207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.