These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32040130)

  • 1. Highly wet aqueous foams stabilized by an amphiphilic bio-based hydrogelator derived from dehydroabietic acid.
    Yan T; Song B; Cui Z; Pei X
    Soft Matter; 2020 Mar; 16(9):2285-2290. PubMed ID: 32040130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Widely Adaptable Oil-in-Water Gel Emulsions Stabilized by an Amphiphilic Hydrogelator Derived from Dehydroabietic Acid.
    Yan T; Song B; Pei X; Cui Z; Binks BP; Yang H
    Angew Chem Int Ed Engl; 2020 Jan; 59(2):637-641. PubMed ID: 31670436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial Stabilization of Fiber-Laden Foams with Carboxymethylated Lignin toward Strong Nonwoven Networks.
    Li S; Xiang W; Järvinen M; Lappalainen T; Salminen K; Rojas OJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19827-35. PubMed ID: 27398988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants.
    Alzobaidi S; Da C; Tran V; Prodanović M; Johnston KP
    J Colloid Interface Sci; 2017 Feb; 488():79-91. PubMed ID: 27821342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoresponsive Foams Generated by a Rigid Surfactant Derived from Dehydroabietic Acid.
    Lei L; Xie D; Song B; Jiang J; Pei X; Cui Z
    Langmuir; 2017 Aug; 33(32):7908-7916. PubMed ID: 28735541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion-specific effects in foams.
    Sett S; Karakashev SI; Smoukov SK; Yarin AL
    Adv Colloid Interface Sci; 2015 Nov; 225():98-113. PubMed ID: 26386757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of aqueous foams stabilized by dodecyltrimethylammonium bromide.
    Carey E; Stubenrauch C
    J Colloid Interface Sci; 2009 May; 333(2):619-27. PubMed ID: 19268300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous foams stabilized by chitin nanocrystals.
    Tzoumaki MV; Karefyllakis D; Moschakis T; Biliaderis CG; Scholten E
    Soft Matter; 2015 Aug; 11(31):6245-53. PubMed ID: 26154562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous Foams in the Presence of Surfactant Crystals.
    Binks BP; Shi H
    Langmuir; 2020 Feb; 36(4):991-1002. PubMed ID: 31985231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors controlling the formation and stability of foams used as precursors of porous materials.
    Lesov I; Tcholakova S; Denkov N
    J Colloid Interface Sci; 2014 Jul; 426():9-21. PubMed ID: 24863759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-Lived and Thermoresponsive Emulsion Foams Stabilized by Self-Assembled Saponin Nanofibrils and Fibrillar Network.
    Wan Z; Sun Y; Ma L; Zhou F; Guo J; Hu S; Yang X
    Langmuir; 2018 Apr; 34(13):3971-3980. PubMed ID: 29546991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foam sclerosants are more stable at lower temperatures.
    Valenzuela GC; Wong K; Connor DE; Behnia M; Parsi K
    Eur J Vasc Endovasc Surg; 2013 Nov; 46(5):593-9. PubMed ID: 24070851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms behind the stabilizing action of cellulose nanofibrils in wet-stable cellulose foams.
    Cervin NT; Johansson E; Benjamins JW; Wågberg L
    Biomacromolecules; 2015 Mar; 16(3):822-31. PubMed ID: 25635472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drainage
    Ochoa C; Xu C; Martínez Narváez CDV; Yang W; Zhang Y; Sharma V
    Soft Matter; 2021 Oct; 17(39):8915-8924. PubMed ID: 34545906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Condensate Oil-Tolerant Foams Stabilized by an Anionic-Sulfobetaine Surfactant Mixture.
    Qu C; Wang J; Yin H; Lu G; Li Z; Feng Y
    ACS Omega; 2019 Jan; 4(1):1738-1747. PubMed ID: 31459431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes.
    Xue Z; Worthen A; Qajar A; Robert I; Bryant SL; Huh C; Prodanović M; Johnston KP
    J Colloid Interface Sci; 2016 Jan; 461():383-395. PubMed ID: 26414421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Lipid Phase State and Foam Film Type on the Properties of DMPG Stabilized Foams.
    Lalchev ZI; Wilde PJ; Clark DC
    J Colloid Interface Sci; 1997 Jun; 190(2):278-85. PubMed ID: 9241167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growing a particle-stabilized aqueous foam.
    Tyowua AT; Binks BP
    J Colloid Interface Sci; 2020 Mar; 561():127-135. PubMed ID: 31812859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foams Stabilized by Surfactant Precipitates: Criteria for Ultrastability.
    Zhang L; Tian L; Du H; Rouzière S; Wang N; Salonen A
    Langmuir; 2017 Jul; 33(29):7305-7311. PubMed ID: 28669193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of nonaqueous foam with lamellar liquid crystal particles in diglycerol monolaurate/olive oil system.
    Shrestha LK; Shrestha RG; Sharma SC; Aramaki K
    J Colloid Interface Sci; 2008 Dec; 328(1):172-9. PubMed ID: 18823901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.