These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
428 related articles for article (PubMed ID: 32040298)
1. High-Performance Thermoelectric Generators for Field Deployments. Kishore RA; Nozariasbmarz A; Poudel B; Priya S ACS Appl Mater Interfaces; 2020 Mar; 12(9):10389-10401. PubMed ID: 32040298 [TBL] [Abstract][Full Text] [Related]
2. High Power Density Body Heat Energy Harvesting. Nozariasbmarz A; Kishore RA; Poudel B; Saparamadu U; Li W; Cruz R; Priya S ACS Appl Mater Interfaces; 2019 Oct; 11(43):40107-40113. PubMed ID: 31577411 [TBL] [Abstract][Full Text] [Related]
3. Conformal High-Power-Density Half-Heusler Thermoelectric Modules: A Pathway toward Practical Power Generators. Li W; Nozariasbmarz A; Kishore RA; Kang HB; Dettor C; Zhu H; Poudel B; Priya S ACS Appl Mater Interfaces; 2021 Nov; 13(45):53935-53944. PubMed ID: 34698486 [TBL] [Abstract][Full Text] [Related]
4. Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques. Kishore RA; Sanghadasa M; Priya S Sci Rep; 2017 Dec; 7(1):16746. PubMed ID: 29196715 [TBL] [Abstract][Full Text] [Related]
5. Efficiency Enhancement in Ocean Thermal Energy Conversion: A Comparative Study of Heat Exchanger Designs for Bi Chung YC; Wu CI Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591609 [TBL] [Abstract][Full Text] [Related]
6. Thermoelectric Generator Through Dual-Direction Thermal Regulation by Thermal Diodes for Waste Heat Harvesting. Li T; Jiang W; Tong Y; Jiang W; Yin L; Chen B; Shi Y; Zhang L; Liu H Small; 2024 Mar; 20(11):e2304308. PubMed ID: 37936314 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous Realization of Flexibility and Ultrahigh Normalized Power Density in a Heatsink-Free Thermoelectric Generator via Fine Thermal Regulation. Zhu S; Peng Y; Gao J; Miao L; Lai H; Liu C; Zhang J; Zhang Y; Zhou S; Koumoto K; Zhu T ACS Appl Mater Interfaces; 2022 Jan; 14(1):1045-1055. PubMed ID: 34965726 [TBL] [Abstract][Full Text] [Related]
8. Development of Cu Ang AKR; Yamazaki I; Hirata K; Singh S; Matsunami M; Takeuchi T ACS Appl Mater Interfaces; 2023 Oct; 15(40):46962-46970. PubMed ID: 37768216 [TBL] [Abstract][Full Text] [Related]
9. Developing instrumentation to characterize thermoelectric generator modules. Liu D; Li Q; Peng W; Zhu L; Gao H; Meng Q; Jin AJ Rev Sci Instrum; 2015 Mar; 86(3):034703. PubMed ID: 25832254 [TBL] [Abstract][Full Text] [Related]
10. High-Performance Stretchable Thermoelectric Generator for Self-Powered Wearable Electronics. Fan W; An Z; Liu F; Gao Z; Zhang M; Fu C; Zhu T; Liu Q; Zhao X Adv Sci (Weinh); 2023 Apr; 10(12):e2206397. PubMed ID: 36799534 [TBL] [Abstract][Full Text] [Related]
11. Modeling the Effects of Module Size and Material Property on Thermoelectric Generator Power. Wang L; Li K; Zhang S; Liu C; Zhang Z; Chen J; Gu M ACS Omega; 2020 Nov; 5(46):29844-29853. PubMed ID: 33251419 [TBL] [Abstract][Full Text] [Related]
12. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Zhang Q; Sun Y; Xu W; Zhu D Adv Mater; 2014 Oct; 26(40):6829-51. PubMed ID: 24687930 [TBL] [Abstract][Full Text] [Related]
13. Bismuth Telluride Thermoelectrics with 8% Module Efficiency for Waste Heat Recovery Application. Nozariasbmarz A; Poudel B; Li W; Kang HB; Zhu H; Priya S iScience; 2020 Jul; 23(7):101340. PubMed ID: 32688286 [TBL] [Abstract][Full Text] [Related]
14. Evolution of Thermoelectric Generators: From Application to Hybridization. Liu Z; Tian B; Li Y; Guo Z; Zhang Z; Luo Z; Zhao L; Lin Q; Lee C; Jiang Z Small; 2023 Nov; 19(48):e2304599. PubMed ID: 37544920 [TBL] [Abstract][Full Text] [Related]
15. High-Power-Density Wearable Thermoelectric Generators for Human Body Heat Harvesting. Fan W; Shen Z; Zhang Q; Liu F; Fu C; Zhu T; Zhao X ACS Appl Mater Interfaces; 2022 May; 14(18):21224-21231. PubMed ID: 35482595 [TBL] [Abstract][Full Text] [Related]
16. Energy and environmental analysis of a solar evacuated tube heat pipe integrated thermoelectric generator using IoT. Manivannan SP; Gunasekaran DL; Jaganathan G; Natesan S; Muthusamy SM; Kim SC; Kumar B; Poongavanam GK; Duraisamy S Environ Sci Pollut Res Int; 2022 Aug; 29(38):57835-57850. PubMed ID: 35357649 [TBL] [Abstract][Full Text] [Related]
17. Stretchable Nanolayered Thermoelectric Energy Harvester on Complex and Dynamic Surfaces. Yang Y; Hu H; Chen Z; Wang Z; Jiang L; Lu G; Li X; Chen R; Jin J; Kang H; Chen H; Lin S; Xiao S; Zhao H; Xiong R; Shi J; Zhou Q; Xu S; Chen Y Nano Lett; 2020 Jun; 20(6):4445-4453. PubMed ID: 32368921 [TBL] [Abstract][Full Text] [Related]
18. Human body heat-driven thermoelectric generators as a sustainable power supply for wearable electronic devices: Recent advances, challenges, and future perspectives. Tabaie Z; Omidvar A Heliyon; 2023 Apr; 9(4):e14707. PubMed ID: 37025803 [TBL] [Abstract][Full Text] [Related]
19. Understanding Oxidation Resistance of Half-Heusler Alloys for in-Air High Temperature Sustainable Thermoelectric Generators. Kang HB; Saparamadu U; Nozariasbmarz A; Li W; Zhu H; Poudel B; Priya S ACS Appl Mater Interfaces; 2020 Aug; 12(32):36706-36714. PubMed ID: 32672927 [TBL] [Abstract][Full Text] [Related]
20. Performance Assessment of Thermoelectric Generators with Application on Aerodynamic Heat Recovery. Jia X; Fan S; Zhang Z; Wang H Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]